Relative importance of gene effects for nitrogen-use efficiency in popcorn

Autoři: Adriano dos Santos aff001;  Antônio Teixeira do Amaral Júnior aff001;  Roberto Fritsche-Neto aff002;  Samuel Henrique Kamphorst aff001;  Fernando Rafael Alves Ferreira aff001;  José Francisco Teixeira do Amaral aff003;  Janieli Maganha Silva Vivas aff001;  Pedro Henrique Araújo Diniz Santos aff001;  Valter Jário de Lima aff001;  Shahid Khan aff001;  Kátia Fabiane Medeiros Schmitt aff001;  Jhean Torres Leite aff001;  Divino Rosa dos Santos Junior aff001;  Rosimeire Barboza Bispo aff001;  Talles de Oliveira Santos aff001;  Uéliton Alves de Oliveira aff001;  Lauro José Moreira Guimarães aff004;  Oscar Rodriguez aff005
Působiště autorů: Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil aff001;  Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Piracicaba, SP, Brazil aff002;  Departamento de Engenharia Rural, Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo (UFES), Alegre, ES, Brazil aff003;  Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Centro Nacional de Pesquisa de Milho e Sorgo, Sete Lagoas, MG, Brazil aff004;  Department of Agronomy and Horticulture, University of Nebraska, Nebraska, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222726


The objective of this study was to evaluate the effects of additive and non-additive genes on the efficiency of nitrogen (N) use and N responsiveness in inbred popcorn lines. The parents, hybrids and reciprocal crosses were evaluated in a 10x10 triple lattice design at two sites and two levels of N availability. To establish different N levels in the two experiments, fertilization was carried out at sowing, according to soil analysis reports. However, for the experiments with ideal nitrogen availability, N was sidedressed according to the crop requirement, whereas for the N-poor experiments sidedressing consisted of 30% of that applied in the N-rich environment. Two indices were evaluated, the Harmonic Mean of the Relative Performance (HMRP) and Agronomic Efficiency under Low Nitrogen Availability (AELN), both based on grain yield at both N levels. Both additive and non-additive gene effects were important for selection for N-use efficiency. Moreover, there was allelic complementarity between the lines and a reciprocal effect for N-use efficiency, indicating the importance of the choice of the parents used as male or female. The best hybrids were obtained from inbred popcorn lines with contrasting N-use efficiency and N responsiveness.

Klíčová slova:

Agricultural soil science – Crops – Fertilizers – Gene expression – Maize – Quantitative trait loci – Agronomy – Crop genetics


1. Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, et al. Significant Acidification in Major Chinese Croplands. Science (80-). 2010;327: 1008–1010. doi: 10.1126/science.1182570 20150447

2. Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, et al. Enhanced nitrogen deposition over China. Nature. 2013;494: 459–462. doi: 10.1038/nature11917 23426264

3. Good AG, Shrawat AK, Muench DG. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004;9: 597–605. doi: 10.1016/j.tplants.2004.10.008 15564127

4. Kant S, Bi YM, Rothstein SJ. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot. 2011;62: 1499–1509. doi: 10.1093/jxb/erq297 20926552

5. Paponov IA, Sambo P, Schulte Auf’m Erley G, Presterl T, Geiger HH, Engels C. Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil. 2005;272: 111–123. doi: 10.1007/s11104-004-4211-7

6. Uribelarrea M, Moose SP, Below FE. Divergent selection for grain protein affects nitrogen use in maize hybrids. F Crop Res. 2007;100: 82–90. doi: 10.1016/j.fcr.2006.05.008

7. Gallais A, Hirel B. An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot. 2004;55: 295–306. doi: 10.1093/jxb/erh006 14739258

8. Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. 3. QTL detection and coincidences. Theor Appl Genet. 2008;117: 729–747. doi: 10.1007/s00122-008-0815-2 18566796

9. Cañas RA, Quilleré I, Gallais A, Hirel B. Can genetic variability for nitrogen metabolism in the developing ear of maize be exploited to improve yield? New Phytol. 2012;194: 440–452. doi: 10.1111/j.1469-8137.2012.04067.x 22329725

10. Cruz CD., Regazzi IAJ, Carneiro PCS. Modelos biométricos aplicados ao melhoramento genético. UFV. 2012.

11. Ramalho MGA., Abreu AFB, Santos JB., Nunes JA. Aplicações da Genética Quantitativa no Melhoramento de Plantas Autógamas. UFLA. 2012.

12. Silva VMP e, Carneiro PCS, Menezes Júnior JÂN de, Carneiro VQ, Carneiro JE de S, Cruz CD, et al. Genetic potential of common bean parents for plant architecture improvement. Sci Agric. 2013;70: 167–175. doi: 10.1590/s0103-90162013000300005

13. Santos A dos, Amaral Júnior AT do, Kurosawa R do NF, Gerhardt IFS, Fritsche Neto R. GGE Biplot projection in discriminating the efficiency of popcorn lines to use nitrogen. Ciência e Agrotecnologia. 2017;41: 22–31. doi: 10.1590/1413-70542017411030816

14. Wu Y, Liu W, Li X, Li M, Zhang D, Hao Z, et al. Low-nitrogen stress tolerance and nitrogen agronomic efficiency among maize inbreds: Comparison of multiple indices and evaluation of genetic variation. Euphytica. 2011;180: 281–290. doi: 10.1007/s10681-011-0409-y

15. Resende MDV. Matemática e Estatística na Análise de Experimentos e no Melhoramento Genético. Colombo: Embrapa Florestas; 2007.

16. Griffing B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Aust J Biol Sci. 1956;9: 462–493. doi: 10.1071/bi9560463

17. Baker RJ. Issues in Diallel Analysis. Crop Sci. 2010;18: 533. doi: 10.2135/cropsci1978.0011183x001800040001x

18. Zhang Y, Kang MS, Lamkey KR. DIALLEL-SAS05: A Comprehensive Program for Griffing’s and Gardner–Eberhart Analyses. Agron J. 2005;97: 1097. doi: 10.2134/agronj2004.0260

19. Derera J, Musimwa TR. Why SR52 is such a great maize hybrid? I. Heterosis and generation mean analysis. Euphytica. 2015;205: 121–135. doi: 10.1007/s10681-015-1410-7

20. Mukanga M, Derera J, Tongoona P. Gene action and reciprocal effects for ear rot resistance in crosses derived from five tropical maize populations. Euphytica. 2010;174: 293–301. doi: 10.1007/s10681-010-0178-z

21. Souza LV de, Miranda GV, Galvão JCC, Eckert FR, Mantovani ÉE, Lima RO, et al. Controle genético da produção de grão e da eficiência de uso do nitrogênio em milho tropical. Pesqui Agropecu Bras. 2008;43: 1517–1523. doi: 10.1590/S0100-204X2008001100010

22. Liu R, Zhang H, Zhao P, Zhang Z, Liang W, Tian Z, et al. Mining of Candidate Maize Genes for Nitrogen Use Efficiency by Integrating Gene Expression and QTL Data. Plant Mol Biol Report. 2012;30: 297–308. doi: 10.1007/s11105-011-0346-x

23. Zheng Z., Huang Y., Mengliang T. Mapping QTLs and epistasis for plant type traits in maize under two nitrogen levels. J Maize Sci. 2007;15: 14–18.

24. Collins NC, Tardieu F, Tuberosa R. Quantitative Trait Loci and Crop Performance under Abiotic Stress: Where Do We Stand? Plant Physiol. 2008;147: 469–486. doi: 10.1104/pp.108.118117 18524878

25. Thanh NM, Nguyen NH, Ponzoni RW, Vu NT, Barnes AC, Mather PB. Estimates of strain additive and non-additive genetic effects for growth traits in a diallel cross of three strains of giant freshwater prawn (Macrobrachium rosenbergii) in Vietnam. Aquaculture. 2010;299: 30–36. doi: 10.1016/j.aquaculture.2009.12.011

26. Worku M, Bänziger M, Friesen D, Schulte auf’m Erley G, Horst WJ, Vivek BS. Relative importance of general combining ability and specific combining ability among tropical maize (Zea mays L.) inbreds under contrasting nitrogen environments. Maydica. 2008;53: 279–288.

27. DoVale JC, Fritsche-Neto R, Bermudez F, Miranda GV. Efeitos gênicos de caracteres associados à eficiência no uso de nitrogênio em milho. Pesqui Agropecu Bras. 2012;47: 385–392. doi: 10.1590/S0100-204X2012000300010

28. Hallauer AR, Carena MJ, Miranda Filho JB. Quantitative Genetics in Maize Breeding. Springer; 2010.

29. Gouda RK, Kage U, Lohithaswa HC, Shekara BG, Shobha D. Combining Ability Studies in Maize (Zea Mays L.). Mol Plant Breed. 2013;4: 116–127. doi: 10.5376/mpb.2013.04.0014

30. Abdel-Moneam MA, Sultan MS, Salama SMG, El Oraby AM. Evaluation of combining ability and heterosis for yield and its components traits of five maize inbreds under normal and stress nitrogen fertilization. Asian J Crop Sci. 2014;6: 142–149. doi: 10.3923/ajcs.2014.142.149

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata