#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Neuropathy and neural plasticity in the subcutaneous white adipose depot


Autoři: Magdalena Blaszkiewicz aff001;  Jake W. Willows aff002;  Amanda L. Dubois aff001;  Stephen Waible aff002;  Kristen DiBello aff002;  Lila L. Lyons aff002;  Cory P. Johnson aff001;  Emma Paradie aff002;  Nicholas Banks aff003;  Katherine Motyl aff003;  Merilla Michael aff004;  Benjamin Harrison aff004;  Kristy L. Townsend aff001
Působiště autorů: Graduate School of Biomedical Science and Engineering, University of Maine, Orono ME, United States of America aff001;  School of Biology and Ecology, University of Maine, Orono ME, United States of America aff002;  Maine Medical Center Research Institute, Scarborough ME, United States of America aff003;  University of New England, Biddeford ME, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221766

Souhrn

The difficulty in obtaining as well as maintaining weight loss, together with the impairment of metabolic control in conditions like diabetes and cardiovascular disease, may represent pathological situations of inadequate neural communication between the brain and peripheral organs and tissues. Innervation of adipose tissues by peripheral nerves provides a means of communication between the master metabolic regulator in the brain (chiefly the hypothalamus), and energy-expending and energy-storing cells in the body (primarily adipocytes). Although chemical and surgical denervation studies have clearly demonstrated how crucial adipose tissue neural innervation is for maintaining proper metabolic health, we have uncovered that adipose tissue becomes neuropathic (ie: reduction in neurites) in various conditions of metabolic dysregulation. Here, utilizing both human and mouse adipose tissues, we present evidence of adipose tissue neuropathy, or loss of proper innervation, under pathophysiological conditions such as obesity, diabetes, and aging, all of which are concomitant with insult to the adipose organ as well as metabolic dysfunction. Neuropathy is indicated by loss of nerve fiber protein expression, reduction in synaptic markers, and lower neurotrophic factor expression in adipose tissue. Aging-related adipose neuropathy particularly results in loss of innervation around the tissue vasculature, which cannot be reversed by exercise. Together with indications of neuropathy in muscle and bone, these findings underscore that peripheral neuropathy is not restricted to classic tissues like the skin of distal extremities, and that loss of innervation to adipose may trigger or exacerbate metabolic diseases. In addition, we have demonstrated stimulation of adipose tissue neural plasticity with cold exposure, which may ameliorate adipose neuropathy and be a potential therapeutic option to re-innervate adipose and restore metabolic health.

Klíčová slova:

Biology and life sciences – Anatomy – Biological tissue – Adipose tissue – Nervous system – Nerves – Molecular biology – Molecular biology techniques – Molecular biology assays and analysis techniques – Gene expression and vector techniques – Protein expression – Physiology – Physiological parameters – Obesity – Medicine and health sciences – Neurology – Neuropathy – Peripheral neuropathy – Body weight – Endocrinology – Endocrine disorders – Metabolic disorders – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Mouse models – Animal models


Zdroje

1. Ryu V, Watts AG, Xue B, Bartness TJ. Bidirectional crosstalk between the sensory and sympathetic motor systems innervating brown and white adipose tissue in male Siberian hamsters. American journal of physiology Regulatory, integrative and comparative physiology. 2017;312(3):R324–r37. Epub 2017/01/13. doi: 10.1152/ajpregu.00456.2015. 28077392; PubMed Central PMCID: PMC5401994.

2. Morrison SF, Madden CJ. Central nervous system regulation of brown adipose tissue. Comprehensive Physiology. 2014;4(4):1677–713. Epub 2014/11/28. doi: 10.1002/cphy.c140013. 25428857; PubMed Central PMCID: PMC4435534.

3. Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol. 2010;318(1–2):34–43. Epub 2009/09/15. doi: 10.1016/j.mce.2009.08.031. 19747957; PubMed Central PMCID: PMC2826518.

4. Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 2010;34 Suppl 1:S36–42.:S36-S42.

5. Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab. 2014;25(4):168–77. Epub 2014/01/07. doi: 10.1016/j.tem.2013.12.004. 24389130; PubMed Central PMCID: PMC3972344.

6. Ramseyer VD, Granneman JG. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte. 2016;5(2):119–29. Epub 2016/07/08. doi: 10.1080/21623945.2016.1145846. 27386156; PubMed Central PMCID: PMC4916885.

7. Geloen A, Collet AJ, Bukowiecki LJ. Role of sympathetic innervation in brown adipocyte proliferation. Am J Physiol. 1992;263(6 Pt 2):R1176–R81.

8. Desautels M, Dulos RA, Mozaffari B. Selective loss of uncoupling protein from mitochondria of surgically denervated brown adipose tissue of cold-acclimated mice. BiochemCell Biol. 1986;64(11):1125–34.

9. Bowers RR, Festuccia WT, Song CK, Shi H, Migliorini RH, Bartness TJ. Sympathetic innervation of white adipose tissue and its regulation of fat cell number. American journal of physiology Regulatory, integrative and comparative physiology. 2004;286(6):R1167–75. Epub 2004/05/15. doi: 10.1152/ajpregu.00558.2003. 15142857.

10. Cantu RC, Goodman HM. Effects of denervation and fasting on white adipose tissue. Am J Physiol. 1967;212(1):207–12. Epub 1967/01/01. 6016006.

11. Shi H, Song CK, Giordano A, Cinti S, Bartness TJ. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. American journal of physiology Regulatory, integrative and comparative physiology. 2005;288(4):R1028–37. Epub 2004/11/20. doi: 10.1152/ajpregu.00648.2004. 15550613.

12. Bartness TJ, Song CK. Brain-adipose tissue neural crosstalk. Physiol Behav. 2007;91(4):343–51. doi: 10.1016/j.physbeh.2007.04.002 17521684

13. Giordano A, Morroni M, Santone G, Marchesi GF, Cinti S. Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocytol. 1996;25(2):125–36. Epub 1996/02/01. 8699194.

14. Blaszkiewicz M, Townsend KL. Adipose Tissue and Energy Expenditure: Central and Peripheral Neural Activation Pathways. Current obesity reports. 2016;5(2):241–50. Epub 2016/04/09. doi: 10.1007/s13679-016-0216-9. 27055864.

15. Giordano A, Frontini A, Castellucci M, Cinti S. Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J Histochem Cytochem. 2004;52(7):923–30. Epub 2004/06/23. doi: 10.1369/jhc.3A6246.2004. 15208359.

16. Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 2010;34 Suppl 1:S36–42. Epub 2010/10/12. doi: 10.1038/ijo.2010.182. 20935665; PubMed Central PMCID: PMC3999344.

17. Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, Seixas E, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell. 2015;163(1):84–94. Epub 2015/09/26. doi: 10.1016/j.cell.2015.08.055. 26406372.

18. Jiang H, Ding X, Cao Y, Wang H, Zeng W. Dense Intra-adipose Sympathetic Arborizations Are Essential for Cold-Induced Beiging of Mouse White Adipose Tissue. Cell Metab. 2017;26(4):686–92 e3. Epub 2017/09/19. doi: 10.1016/j.cmet.2017.08.016. 28918935.

19. Cao Y, Wang H, Zeng W. Whole-tissue 3D imaging reveals intra-adipose sympathetic plasticity regulated by NGF-TrkA signal in cold-induced beiging. Protein Cell. 2018;9(6):527–39. Epub 2018/03/29. doi: 10.1007/s13238-018-0528-5. 29589323; PubMed Central PMCID: PMC5966360.

20. Hanewinckel R, Drenthen J, van Oijen M, Hofman A, van Doorn PA, Ikram MA. Prevalence of polyneuropathy in the general middle-aged and elderly population. Neurology. 2016;87(18):1892–8. Epub 2016/11/02. doi: 10.1212/wnl.0000000000003293. 27683845.

21. Tesfaye S, Stevens LK, Stephenson JM, Fuller JH, Plater M, Ionescu-Tirgoviste C, et al. Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia. 1996;39(11):1377–84. Epub 1996/11/01. 8933008.

22. Kaley TJ, Deangelis LM. Therapy of chemotherapy-induced peripheral neuropathy. Br J Haematol. 2009;145(1):3–14. Epub 2009/01/28. doi: 10.1111/j.1365-2141.2008.07558.x. 19170681.

23. Vileikyte L, Rubin RR, Leventhal H. Psychological aspects of diabetic neuropathic foot complications: an overview. Diabetes Metab Res Rev. 2004;20 Suppl 1:S13–8. Epub 2004/05/20. doi: 10.1002/dmrr.437. 15150807.

24. Vinik AI, Park TS, Stansberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia. 2000;43(8):957–73. doi: 10.1007/s001250051477 10990072

25. DeFronzo RA. Glucose intolerance and aging. Diabetes Care. 1981;4(4):493–501. 7049632

26. Barzilai N, Banerjee S, Hawkins M, Chang CJ, Chen W, Rossetti L. The effect of age-dependent increase in fat mass on peripheral insulin action is saturable. J GerontolABiol Sci Med Sci. 1998;53(2):B141–B6.

27. Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol. 2007;42(6):463–71. doi: 10.1016/j.exger.2007.03.003 17507194

28. Anish L, Nagappa M, Mahadevan A, Taly AB. Neuropathy in elderly: lessons learnt from nerve biopsy. Age and ageing. 2015;44(2):312–7. Epub 2014/11/05. doi: 10.1093/ageing/afu171. 25362502.

29. O'Brien PD, Hur J, Hayes JM, Backus C, Sakowski SA, Feldman EL. BTBR ob/ob mice as a novel diabetic neuropathy model: Neurological characterization and gene expression analyses. Neurobiology of disease. 2015;73:348–55. Epub 2014/12/03. doi: 10.1016/j.nbd.2014.10.015. 25447227; PubMed Central PMCID: PMC4416075.

30. Cheng HT, Dauch JR, Hayes JM, Hong Y, Feldman EL. Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol. 2009;68(11):1229–43. Epub 2009/10/10. doi: 10.1097/NEN.0b013e3181bef710. 19816194; PubMed Central PMCID: PMC3163104.

31. O’Brien PD, Hur J, Robell NJ, Hayes JM, Sakowski SA, Feldman EL. Gender-specific differences in diabetic neuropathy in BTBR ob/ob mice. J Diabetes Complications. 2016;30(1):30–7. doi: 10.1016/j.jdiacomp.2015.09.018. 26525588; PubMed Central PMCID: PMC4698064.

32. Klingenspor M, Meywirth A, Stohr S, Heldmaier G. Effect of unilateral surgical denervation of brown adipose tissue on uncoupling protein mRNA level and cytochrom-c-oxidase activity in the Djungarian hamster. Journal of comparative physiology B, Biochemical, systemic, and environmental physiology. 1994;163(8):664–70. Epub 1994/01/01. 8195470.

33. Hamilton JM, Bartness TJ, Wade GN. Effects of norepinephrine and denervation on brown adipose tissue in Syrian hamsters. Am J Physiol. 1989;257(2 Pt 2):R396–404. Epub 1989/08/01. 2548410.

34. Rix M, Andreassen H, Eskildsen P. Impact of peripheral neuropathy on bone density in patients with type 1 diabetes. Diabetes Care. 1999;22(5):827–31. Epub 1999/05/20. doi: 10.2337/diacare.22.5.827. 10332690.

35. Kim JH, Jung MH, Lee JM, Son HS, Cha BY, Chang SA. Diabetic peripheral neuropathy is highly associated with nontraumatic fractures in Korean patients with type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2012;77(1):51–5. Epub 2011/09/13. doi: 10.1111/j.1365-2265.2011.04222.x. 21906118.

36. Kingsley K, Carroll K, Huff JL, Plopper GE. Photobleaching of arterial autofluorescence for immunofluorescence applications. Biotechniques. 2001;30(4):794–7. Epub 2001/04/21. 11314262.

37. Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda, Md). 2013;28(5):330–58. Epub 2013/09/03. doi: 10.1152/physiol.00019.2013. 23997192.

38. Gamu D, Trinh A, Bombardier E, Tupling AR. Persistence of diet-induced obesity despite access to voluntary activity in mice lacking sarcolipin. Physiol Rep. 2015;3(9). Epub 2015/09/25. doi: 10.14814/phy2.12549. 26400985; PubMed Central PMCID: PMC4600390.

39. Gurley JM, Griesel BA, Olson AL. Increased Skeletal Muscle GLUT4 Expression in Obese Mice After Voluntary Wheel Running Exercise Is Posttranscriptional. Diabetes. 2016;65(10):2911–9. Epub 2016/07/15. doi: 10.2337/db16-0305. 27411383; PubMed Central PMCID: PMC5033261.

40. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res. 2012;53(4):619–29. Epub 2012/01/25. doi: 10.1194/jlr.M018846. 22271685; PubMed Central PMCID: PMC3307639.

41. Murano I, Barbatelli G, Giordano A, Cinti S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. Journal of anatomy. 2009;214(1):171–8. doi: 10.1111/j.1469-7580.2008.01001.x 19018882

42. Sidman RL, Fawcett DW. The effect of peripheral nerve section on some metabolic responses of brown adipose tissue in mice. The Anatomical Record. 1954;118(3):487–507. doi: 10.1002/ar.1091180303. 13158866

43. Wirsen C. Distribution of adrenergic nerve fibers in brown and white adipose tissue. Handbook of physiology: American Physiological Society, Washington, DC; 1965. p. 197–9.

44. De Matteis R, Ricquier D, Cinti S. TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J Neurocytol. 1998;27(12):877–86. Epub 2000/02/05. 10659680.

45. Scioli MG, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc Cell. 2014;6:19. Epub 2014/09/23. doi: 10.1186/2045-824X-6-19. 25243060; PubMed Central PMCID: PMC4169693.

46. Dinenno FA, Tanaka H, Stauffer BL, Seals DR. Reductions in basal limb blood flow and vascular conductance with human ageing: role for augmented alpha-adrenergic vasoconstriction. J Physiol. 2001;536(Pt 3):977–83. Epub 2001/11/03. doi: 10.1111/j.1469-7793.2001.00977.x 11691889; PubMed Central PMCID: PMC2278891.

47. Wolf SA, Melnik A, Kempermann G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain BehavImmun. 2011;25(5):971–80.

48. Blaszkiewicz M, Willows JW, Johnson CP, Townsend KL. The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. Biology (Basel). 2019;8(1). Epub 2019/02/15. doi: 10.3390/biology8010010. 30759876.

49. Isackson PJ, Huntsman MM, Murray KD, Gall CM. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron. 1991;6(6):937–48. Epub 1991/06/01. 2054188.

50. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373(6510):109. Epub 1995/01/12. doi: 10.1038/373109a0. 7816089.

51. Zoladz JA, Majerczak J, Zeligowska E, Mencel J, Jaskolski A, Jaskolska A, et al. Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in Parkinson's disease patients. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society. 2014;65(3):441–8. Epub 2014/06/17. 24930517.

52. Hausman GJ, Poulos SP, Richardson RL, Barb CR, Andacht T, Kirk HC, et al. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells. J Anim Sci. 2006;84(7):1666–81. Epub 2006/06/16. doi: 10.2527/jas.2005-539. 16775050.

53. Ryan VH, German AJ, Wood IS, Hunter L, Morris P, Trayhurn P. NGF gene expression and secretion by canine adipocytes in primary culture: upregulation by the inflammatory mediators LPS and TNFalpha. Horm Metab Res. 2008;40(12):861–8. Epub 2008/09/17. doi: 10.1055/s-0028-1083782. 18792883.

54. Townsend KL, Madden CJ, Blaszkiewicz M, McDougall L, Tupone D, Lynes MD, et al. Reestablishment of Energy Balance in a Male Mouse Model With POMC Neuron Deletion of BMPR1A. Endocrinology. 2017;158(12):4233–45. doi: 10.1210/en.2017-00212 29040444

55. Boucher J, Castan-Laurell I, Le Lay S, Grujic D, Sibrac D, Krief S, et al. Human alpha 2A-adrenergic receptor gene expressed in transgenic mouse adipose tissue under the control of its regulatory elements. J Mol Endocrinol. 2002;29(2):251–64. 12370125

56. Lafontan M, Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res. 1993;34(7):1057–91. Epub 1993/07/01. 8371057.

57. Jensen MD. Lipolysis: contribution from regional fat. Annu Rev Nutr. 1997;17:127–39. Epub 1997/01/01. doi: 10.1146/annurev.nutr.17.1.127. 9240922.

58. Reynisdottir S, Wahrenberg H, Carlstrom K, Rossner S, Arner P. Catecholamine resistance in fat cells of women with upper-body obesity due to decreased expression of beta 2-adrenoceptors. Diabetologia. 1994;37(4):428–35. Epub 1994/04/01. 8063046.

59. Lonnqvist F, Wahrenberg H, Hellstrom L, Reynisdottir S, Arner P. Lipolytic catecholamine resistance due to decreased beta 2-adrenoceptor expression in fat cells. J Clin Invest. 1992;90(6):2175–86. Epub 1992/12/01. doi: 10.1172/JCI116103. 1334970; PubMed Central PMCID: PMC443368.

60. Faulds G, Ryden M, Ek I, Wahrenberg H, Arner P. Mechanisms behind lipolytic catecholamine resistance of subcutaneous fat cells in the polycystic ovarian syndrome. J Clin Endocrinol Metab. 2003;88(5):2269–73. Epub 2003/05/03. doi: 10.1210/jc.2002-021573. 12727985.

61. Hellström L, Rössner S, Hagström-Toft E, Reynisdottir S. Lipolytic catecholamine resistance linked to α2-adrenoceptor sensitivity—a metabolic predictor of weight loss in obese subjects. International Journal Of Obesity. 1997;21:314. doi: 10.1038/sj.ijo.0800407 9130030

62. Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sánchez NM, Mahú I, et al. Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nature medicine. 2017;23(11):1309. doi: 10.1038/nm.4422 29035364

63. Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY, Wing A, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature. 2017;550(7674):119–23. Epub 2017/09/28. doi: 10.1038/nature24022. 28953873; PubMed Central PMCID: PMC5718149.

64. Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. J Exp Biol. 2018;221(Pt Suppl 1). Epub 2018/03/09. doi: 10.1242/jeb.165381. 29514884.

65. Kodama T, Matsuki D, Tada A, Takeda K, Mori S. New concept for the prevention and treatment of metastatic lymph nodes using chemotherapy administered via the lymphatic network. Sci Rep. 2016;6:32506. Epub 2016/09/02. doi: 10.1038/srep32506. 27581921; PubMed Central PMCID: PMC5007471.

66. Kochi T, Imai Y, Takeda A, Watanabe Y, Mori S, Tachi M, et al. Characterization of the arterial anatomy of the murine hindlimb: functional role in the design and understanding of ischemia models. PLoS One. 2013;8(12):e84047. Epub 2014/01/05. doi: 10.1371/journal.pone.0084047. 24386328; PubMed Central PMCID: PMC3875518.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#