Multidrug-resistant profile and prevalence of extended spectrum β-lactamase and carbapenemase production in fermentative Gram-negative bacilli recovered from patients and specimens referred to National Reference Laboratory, Addis Ababa, Ethiopia

Autoři: Degefu Beyene aff001;  Adane Bitew aff002;  Surafel Fantew aff001;  Amete Mihret aff001;  Martin Evans aff003
Působiště autorů: Ethiopian Public Health Institute, Clinical Bacteriology and Mycology Research Case Team, Addis Ababa, Ethiopia aff001;  Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia aff002;  American Society for Microbiology, New York, New York, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222911



The emergence of multidrug-resistance (MDR), production of extended-spectrum β-lactamases, and carbapenemase in members of fermentative gram-negative bacilli are a serious threat to public health.


The aim of this study was to determine the burden of multi-drug resistance, the production of extended-spectrum β-lactamases (ESBLs), and carbapenemase in fermentative Gram-negative bacilli in Ethiopian Public Health Institute.

Materials and methods

A cross-sectional study was carried out from December 2017 to June 2018. Different clinical samples were collected, inoculated, and incubated according to standard protocols related to each sample. Bacterial identification was performed by using the VITEKR 2 compact system using the GNR card. Antimicrobial susceptibility testing was carried out by the Kirby-Bauer disc diffusion method. Production of ESBL and carbapenemase were confirmed by combination disc and modified Hodge Test method respectively.


A total of 238 fermentative Gram-negative bacilli were recovered during the study period, among which E.coli were the predominant isolates followed by K. pneumoniae. The highest percentage of antibiotic resistance was noted against ampicillin (100%) followed by trimethoprim/sulfamethoxazole (81.9%). The isolates showed better sensitivity towards carbapenem drugs. Out of 238 isolates, 94.5% were MDR and of which 8.8% and 0.8% were extensively and pan drug resistant, respectively. Nearly 67% and 2% of isolates were producers of ESBL and carbapenemase, respectively. The isolation rates of MDR, ESBL, and carbapenemase producing stains of the isolates were ≥70% in intensive care unit while the isolation rates in other wards were ≤25%.


The findings of this study revealed that the burden of MDR and ESBL was high and carbapenemase producing isolates were also identified which is concerning. This situation warrants a consistent surveillance of antimicrobial resistance of fermentative Gram-negative bacilli and implementation of an efficient infection control program.

Klíčová slova:

Antibacterials – Antibiotic resistance – Antibiotics – Antimicrobial resistance – Antimicrobials – Blood – Gram negative bacteria


1. Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011; 17: 1791–1798. doi: 10.3201/eid1710.110655 22000347

2. Paterson DL. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am J Infect Control.2006; 34: S20–28. doi: 10.1016/j.ajic.2006.05.238 16813978

3. Fournier PE, Richet H. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006; 42:692–699. doi: 10.1086/500202 16447117

4. Bassetti M, Ginocchio F, Mikulska M. New treatment options against gram-negative organisms. Crit Care. 2011; 15:215. doi: 10.1186/cc9997 21457501

5. Sharma A. Antimicrobial resistance: no action today, no cure tomorrow. Indian Journal of Medical Microbiology. 2011; 29 (2):91. doi: 10.4103/0255-0857.81774 21654100

6. Duthey B. Priority medicines for Europe and the world: “a public health approach to innovation”. WHO Background paper. 2013; 6.

7. Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001; 14:933–951. doi: 10.1128/CMR.14.4.933-951.2001 11585791

8. Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 2003; 36: 11–23.

9. Tada T, Miyoshi-Akiyama T, Dahal RK, Mishra SK, Ohara H, Shimada K, et al. Dissemination of multidrug-resistant Klebsiella pneumoniae clinical isolates with various combinations of carbapenemases (NDM-1 and OXA-72) and 16S rRNA methylases (ArmA, RmtC and RmtF) in Nepal. Int J Antimicrob Agents. 2013; 42:372–374. doi: 10.1016/j.ijantimicag.2013.06.014 23978353

10. Leski T, Vora G, Taitt CR. Multidrug resistance determinants from NDM-1 producing Klebsiella pneumoniae, United States of America. Int J Antimicrob Agents. 2012; 40:282–284. doi: 10.1016/j.ijantimicag.2012.05.019 22817914

11. Organization WH. Antimicrobial resistance: global report on surveillance: World Health Organization; 2014.

12. Duthey B. Priority medicines for Europe and the world: “a public health approach to innovation”. WHO Background paper. 2013; 6.

13. Carlet J. Antibiotic resistance: Protecting antibiotics-the declaration of the world alliance against antibiotic resistance. Indian Journal of Critical Care Medicine. 2014; 18(10):643. doi: 10.4103/0972-5229.142171 25316972

14. Organization WH. Antimicrobial resistance: no action today, no cure tomorrow. World Health Day. 2011; 7.

15. Moquet O, Bouchiat C, Kinana A, Seck A, Arouna O, Sebastien B, et al. (2011) Class D OXA-48 carbapenemase in multidrug-resistant enterobacteria, Senegal. Emerg Infect Dis 17: 143–144. doi: 10.3201/eid1701.100244 21192883

16. Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F. Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. Biomed Res Int. 2014: 303104. doi: 10.1155/2014/303104 24707481.

17. Anonymous. The antibiotic alarm. Nature. 2013; 495(7440):141.

18. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. 2013.

19. Ben-Ami R, Rodriguez-Bano J, Arslan H, Pitout JD, Quentin C, Calbo ES, et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing Enterobacteriaceae in non-hospitalized patients. Clin Infect Dis. 2009; 49: 682–690. doi: 10.1086/604713 19622043

20. Perez F, Van Duin D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. 2013; 80:225–233. doi: 10.3949/ccjm.80a.12182 23547093

21. Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement. CLSI Document M100-S27. 940 Wayne, PA, U.S.A. 2018. 36.

22. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG. Multidrug-resistant, extensively drug-resistant and pan-drug resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect.2011; 18:268–81. doi: 10.1111/j.1469-0691.2011.03570.x 21793988

23. Eshetie S, Unakal C, Gelaw A, Ayelign B, Endris M, Moges F. Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrobial resistance and infection control. 2015; 4 (1):12.

24. Yadav KK, Adhikari N, Khadka R, Pant AD, Shah B. Multidrug resistant Enterobacteriaceae and extended spectrum β-lactamase producing Escherichia coli: a cross-sectional study in National Kidney Center, Nepal. Antimicrobial resistance and infection control. 2015; 4(1):42

25. Kibret M, Abera B. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. African health sciences. 2011; 11(3):40–5.

26. Kucukate Emine. Antimicrobial Resistance among Gram-negative bacteria isolated from ICI in a Cardiology Institute in Istanbul, Turkey.Jpn.J.Infect.Dis.,2005,58,228–231 16116256

27. Legese MH, Mulugeta G, Weldearegay, Asrat D. Extended-spectrum beta-lactamase- and Carbapenemase- producing Enterobacteriaceae among Ethiopian children. Infec and Drug Resistance.2017:10 27–34.

28. Derese B, Kedir H, Teklemariam Z, Weldegebreal F, Balakrishnan S. Bacterial profile of urinary tract infection and antimicrobial susceptibility pattern among pregnant women attending at antenatal Clinic in Dil Chora Referral Hospital, Dire Dawa, Eastern Ethiopia. Therapeutics and clinical risk management. 2016; 12:251. doi: 10.2147/TCRM.S99831 26937197

29. Demilie T, Beyene G, Melaku S, Tsegaye W. Urinary bacterial profile and antibiotic susceptibility pattern among pregnant women in North West Ethiopia. Ethiopian journal of health sciences. 2012; 22 (2).

30. Bhatt Puneet, Tandel Kundan, Shete Vishal and Rathi K. R. Burden of extensively drug-resistant and pandrug-resistant Gram-negative bacteria at a tertiary-care centre, New Microbes and New Infections, 2015; 8

31. Begum Nurjahan, Shamsuzzaman S. M. Emergence of multidrug resistant and extensively drug resistant community acquired uropathogens in Dhaka city, Bangladesh. Bangladesh J Med Microbiol 2015; 9 (2): 7–12

32. Hasanin Ahmed, Eladawy Akram, Mohamed Hossam, Salah Yasmin,&, Lotfy Ahmed, Mostafa Hanan, et al. Prevalence of extensively drug-resistant gram negative bacilli in surgical intensive care in Egypt. Pan African Medical Journal. 2014; 19:177. doi: 10.11604/pamj.2014.19.177.4307 25815098

33. Moges Feleke, Eshetie Setegn, Abebe Wondwossen, Mekonnen Feleke, Dagnew Mulat, et al. High prevalence of extended-spectrum betalactamase-producing Gram-negative pathogens from patients attending Felege Hiwot Comprehensive Specialized Hospital, Bahir Dar, Amhara region. PLOS ONE.2019; 14(4): 0198979.

34. Manyahi J, Matee MI, Majigo M, Moyo S, Mshana SE, Lyamuya EF. Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili National Hospital, Tanzania. BMC Res Notes. 2014; 7:500. doi: 10.1186/1756-0500-7-500 25100042

35. Kateregga JN, Kantume R, Atuhaire C, Lubowa MN, Ndukui JG. Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago hospital. Uganda BMC Pharmacol Toxicol. 2015; 16(14):1–6.

36. Shiferaw Dejenie, Aseffa Abebe, Hailu Melese, Legesse Tesfaye, Ketema Hiwot and Desta Kassu. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance and Infection Control.2019; 8:39. doi: 10.1186/s13756-019-0488-4 30815254

37. Siraj SM, Ali S, Wondafrash B. Extended- spectrum β -lactamase production in Klebsiella pneumoniae and Escherichia coli at Jimma University specialized hospital, south-west, Ethiopia. Mol. Microbiol Res. 2015; 5(1):1–9.

38. Abayneh Mengistu, Tesfaw Getnet, and Abdissa Alemseged. Isolation of Extended-Spectrum β-lactamase- (ESBL-) Producing Escherichia coli and Klebsiella pneumoniae from Patients with Community-Onset Urinary Tract Infections in Jimma University Specialized Hospital, Southwest Ethiopia. Canadian Journal of Infectious Diseases and Medical Microbiology.2018; (2018), 8.

39. Ouedraogo A-S, Sanou M, Kissou A, Sanou S, Solaré H, Kaboré F, et al. High prevalence of extended-spectrum ß-lactamase producing enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect Dis. 2016; 16(1):326.

40. Obeng-N krumah N, Twum-Danso K, Krogfelt KA, Newman MJ. High levels of extended-Spectrum Beta-lactamases in a major teaching Hospital in Ghana: the need for regular monitoring and evaluation of antibiotic resistance.Am J Trop Med Hyg.2013; 89(5):960–4. doi: 10.4269/ajtmh.12-0642 24043693

41. Moyo S. J., Aboud S., Kasubi M., Lyamuya E. F., and Maselle S.Y., “Antimicrobial resistance among producers and non-producers of extended spectrum β-lactamases (ESBLs) in urinary isolates at a tertiary Hospital in Tanzania,” BMC. 2010; 3; 348.

42. Mulisa G, Selassie LG, W T, Jarso G, Shiferew T, Zewdu A, et al. Prevalence of extended Spectrum Beta-lactamase producing Enterobacteriaceae: a cross sectional study at Adama hospital, Adama, Ethiopia. J Emerg Infect Dis. 2016; 1(1):1–6.

43. Shashwati N, Kiran T DA. Study of extended spectrum β-lactamase producing Enterobacteriaceae and antibiotic coresistance in a tertiary care teaching hospital. J Nat Sci Biol Med 2014; 5(1):30. doi: 10.4103/0976-9668.127280 24678193

44. Oduyebo OO, Falayi OM, Oshun P, Ettu AO. Phenotypic determination of carbapenemase producing enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Niger Postgrad Med J. 2015; 22:223–7. doi: 10.4103/1117-1936.173973 26776335

45. Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F. Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. Bio Med research international. 2014;2014

46. Hsueh P, Chen M, Sun C, Chen W, Pan J, Yang L, et al. Antimicrobial drug resistance in pathogens causing nosocomial infections at a university hospital in Taiwan. Emerg Infect Dis. 2002; 8:63–68. doi: 10.3201/eid0801.000454 11749750

47. Paskovaty A, Pflomm JM, Myke N, Seo SK. A multidisciplinary approach to antimicrobial stewardship: evolution in the 21st century. Int J Antimicrob Agents. 2005; 25:1–10. doi: 10.1016/j.ijantimicag.2004.09.001 15620820

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Ulcerative colitis_muž_břicho_střeva
Ulcerózní kolitida
nový kurz

Blokátory angiotenzinových receptorů (sartany)
Autoři: MUDr. Jiří Krupička, Ph.D.

Antiseptika a prevence ve stomatologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Citikolin v neuroprotekci a neuroregeneraci: od výzkumu do klinické praxe nejen očních lékařů
Autoři: MUDr. Petr Výborný, CSc., FEBO

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Všechny kurzy
Kurzy Doporučená témata