#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic characterization of fall armyworm (Spodoptera frugiperda) in Ecuador and comparisons with regional populations identify likely migratory relationships


Autoři: Rodney N. Nagoshi aff001;  Benjamin Y. Nagoshi aff002;  Ernesto Cañarte aff003;  Bernardo Navarrete aff003;  Ramón Solórzano aff003;  Sandra Garcés-Carrera aff003
Působiště autorů: Center for Medical, Agricultural and Veterinary Entomology, United States Department of Agriculture-Agricultural Research Service, Gainesville, Florida, United States of America aff001;  University of South Florida, Tampa, Florida, United States of America aff002;  National Institute of Agriculture Research (INIAP), Quito, Ecuador aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222332

Souhrn

Fall armyworm, Spodoptera frugiperda (J. E. Smith), is an important agricultural pest native to the Americas that has recently been introduced into the Eastern Hemisphere where it has spread rapidly through most of Africa and much of Asia. The long-term economic consequences of this invasion will depend on how the species and important subpopulations become distributed upon reaching equilibrium, which is expected to be influenced by a number of factors including climate, geography, agricultural practices, and seasonal winds, among others. Much of our understanding of fall armyworm movements have come from mapping genetically defined subpopulations in the Western Hemisphere, particularly in North America where annual long-distance migrations of thousands of kilometers have been documented and modeled. In contrast, fall armyworm mapping in much of the rest of the hemisphere is relatively incomplete, with the northern portion of South America particularly lacking despite its potential importance for understanding fall armyworm migration patterns. Here we describe the first genetic description of fall armyworm infesting corn in Ecuador, which lies near a likely migration conduit based on the location of regional trade winds. The results were compared with populations from corn habitats in select locations in the Caribbean and South America to investigate the possible migratory relationship between these populations and was further assessed with respect to prevailing wind patterns and the distribution of locations with climate favorable for fall armyworm population establishment and growth.

Klíčová slova:

Earth sciences – Seasons – Autumn – People and places – Geographical locations – South America – Ecuador – Peru – Biology and life sciences – Genetics – Heredity – Genetic mapping – Haplotypes – Psychology – Behavior – Animal behavior – Animal migration – Zoology – Organisms – Eukaryota – Plants – Grasses – Maize – Social sciences – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Plant and algal models – Physical sciences – Physics – Classical mechanics – Mechanical stress – Thermal stresses


Zdroje

1. Andrews KL. Latin-American Research on Spodoptera frugiperda (Lepidoptera, Noctuidae). Fla Entomol. 1988;71(4):630–53. doi: 10.2307/3495022

2. Luginbill P. The fall armyworm. US Dept Agric Tech Bull. 1928;34:1–91.

3. Nagoshi RN, Meagher RL, Hay-Roe M. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecology and Evolution. 2012;2(7):1458–67. doi: 10.1002/ece3.268 22957154

4. Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S. Modeling seasonal migration of fall armyworm moths. Int J Biometeorol. 2016;60(2):255–67. doi: 10.1007/s00484-015-1022-x 26045330

5. Westbrook JK. Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr Comp Biol. 2008;48(1):99–106. doi: 10.1093/icb/icn040 21669776

6. Belay DK, Clark PL, Skoda SR, Isenhour DJ, Molina-Ochoa J, Gianni C, et al. Spatial genetic variation among Spodoptera frugiperda (Lepidoptera: Noctuidae) sampled from the United States, Puerto Rico, Panama, and Argentina. Annals of the Entomological Society of America. 2012;105(2):359–67.

7. Clark PL. Population variation of Spodoptera Frugiperda (J.E. Smith) in the Western Hemisphere. [Ph.D. dissertation]. Lincoln, NE: University of Nebraska; 2005.

8. Martinelli S, Barata RM, Zucchi MI, Silva-Filho MDC, Omoto C. Molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil. J Econ Entomol. 2006;99(2):516–26.

9. Nagoshi RN, Silvie P, Meagher RL. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J Econ Entomol. 2007;100(3):954–61. doi: 10.1603/0022-0493(2007)100[954:cohfdf]2.0.co;2 17598561

10. Nagoshi RN, Meagher RL, Flanders K, Gore J, Jackson R, Lopez J, et al. Using haplotypes to monitor the migration of fall armyworm (Lepidoptera:Noctuidae) corn-strain populations from Texas and Florida. J Econ Entomol. 2008;101(3):742–9. doi: 10.1603/0022-0493(2008)101[742:uhtmtm]2.0.co;2 18613574

11. Meagher RL, Nagoshi RN. Differential feeding of fall armyworm (Lepidoptera: Noctuidae) host strains on meridic and natural diets. Ann Entomol Soc Am. 2012;105(3):462–70. doi: 10.1603/An11158

12. Pashley DP. Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae)—a sibling species complex. Ann Entomol Soc Am. 1986;79(6):898–904.

13. Pashley DP, Sparks TC, Quisenberry SS, Jamjanya T, Dowd PF. Two fall armyworm strains feed on corn, rice and bermudagrass. Louisiana Agriculture Magazine. 1987;30:8–9.

14. Cañas-Hoyos N, Marquez EJ, Saldamando-Benjumea CI. Differentiation of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains from central Colombia: A wing morphometric approach. Ann Entomol Soc Am. 2014;107(3):575–81.

15. Cañas-Hoyos N, Marquez EJ, Saldamando-Benjumea CI. Heritability of wing size and shape of the rice and corn strains of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Neotrop Entomol. 2016;45(4):411–9. doi: 10.1007/s13744-016-0393-y 27044394

16. Groot AT, Marr M, Heckel DG, Schofl G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol Entomol. 2010;35:105–18.

17. Groot AT, Marr M, Schofl G, Lorenz S, Svatos A, Heckel DG. Host strain specific sex pheromone variation in Spodoptera frugiperda. Front Zool. 2008;5.

18. Lima ER, McNeil JN. Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology. 2009;19(1):29–36.

19. Pashley DP. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm. Evolution. 1988;42(1):93–102. doi: 10.1111/j.1558-5646.1988.tb04110.x 28563847

20. Pashley DP, Martin JA. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am. 1987;80:731–3.

21. Rios-Diez JD, Saldamando-Benjumea CI. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. J Econ Entomol. 2011;104(5):1698–705. doi: 10.1603/ec11079 22066201

22. Rios-Diez JD, Siegfried B, Saldamando-Benjumea CI. Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to Cry1Ab and Cry1Ac entotoxins of Bacillus thuringiensis. Southwest Entomol. 2012;37(3):281–93.

23. Schöfl G, Dill A, Heckel DG, Groot AT. Allochronic separation versus mate choice: Nonrandom patterns of mating between fall armyworm host strains. Am Nat. 2011;177(4):470–85. doi: 10.1086/658904 21460569

24. Schöfl G, Heckel DG, Groot AT. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: evidence for differing modes of inheritance. J Evolution Biol. 2009;22(7):1447–59.

25. Unbehend M, Hanniger S, Vasquez GM, Juarez ML, Reisig D, McNeil JN, et al. Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males to pheromone Lures. Plos One. 2014;9(2).

26. Juárez ML, Murúa MG, García MG, Ontivero M, Vera MT, Vilardi JC, et al. Host association of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Argentina, Brazil, and Paraguay. J Econ Entomol. 2012;105(2):573–82. doi: 10.1603/ec11184 22606829

27. Murúa MG, Nagoshi RN, Dos Santos DA, Hay-Roe M, Meagher RL, Vilardi JC. Demonstration using field collections that Argentina fall armyworm populations exhibit strain-specific host plant preferences. J Econ Entomol. 2015;108(5):2305–15. doi: 10.1093/jee/tov203 26453719

28. Nagoshi RN. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am. 2010;103(2):283–92. doi: 10.1603/An09046

29. Nagoshi RN, Meagher RL. Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol. 2004;87(4):440–9.

30. Nagoshi RN, Meagher RL. Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ Entomol. 2004;33(4):881–9.

31. Levy HC, Garcia-Maruniak A, Maruniak JE. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit I gene. Fla Entomol. 2002;85(1):186–90.

32. Nagoshi RN, Brambila J, Meagher RL. Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. J Insect Sci. 2011;11:154 available online: 431 insectscience.org/11.154. doi: 10.1673/031.011.15401 22239735

33. Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, Murua MG, et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. Plos One. 2017;12(2):e0171743. doi: 10.1371/journal.pone.0171743 28166292

34. Nagoshi RN, Meagher RL, Nuessly G, Hall DG. Effects of fall armyworm (Lepidoptera: Noctuidae) interstrain mating in wild populations. Environ Entomol. 2006;35(2):561–8.

35. Nagoshi RN, Fleischer S, Meagher RL. Demonstration and quantification of restricted mating between fall armyworm host strains in field collections by SNP comparisons. J Econ Entomol. 2017;110(6):2568–75. doi: 10.1093/jee/tox229 29126215

36. Nagoshi RN, Dhanani I, Asokan R, Mahadevaswamy HM, Kalleshwaraswamy CM, Sharanabasappa, et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. Plos One. 2019;14(5).

37. Nagoshi RN, Goergen G, Du Plessis H, van den Berg J, Meagher R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep-Uk. 2019;9.

38. Shylesha AN, Jalali SK, Gupta A, Varshney R, Venkatesan T, Shetty P, et al. Studies on new invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. Journal of Biological Control. 2018;32(3):145–51. doi: 10.18311/jbc/2018/21707

39. Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV, Chandrashekara K. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr Sci India. 2018;115(4):621–3.

40. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees. Molecular Biology and Evolution. 1993;10(3):512–26. doi: 10.1093/oxfordjournals.molbev.a040023 8336541

41. Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, Murua MG, et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations (vol 12, e0171743, 2017). Plos One. 2017;12(3).

42. Kriticos DJ, Maywald GF, Yonow T, Zurcher EJ, Herrmann NI, Sutherst RW. CLIMEX Version 4: Exploring the effects of climate on plants, animals and diseases. Canberra: CSIRO; 2015.

43. USDA-FAS. Northern South America—Crop Production Maps: United States Department of Agriculture; 2018. https://ipad.fas.usda.gov/rssiws/al/nsa_cropprod.aspx.

44. Nagoshi RN, Meagher RL, Jenkins DA. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J Econ Entomol. 2010;103(2):360–7. doi: 10.1603/ec09253 20429449

45. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199 22543367

46. Saitou N, Nei M. The Neighbor-Joining method—a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987;4(4):406–25. doi: 10.1093/oxfordjournals.molbev.a040454 3447015

47. Clements MJ, Kleinschmidt CE, Maragos CM, Pataky JK, White DG. Evaluation of inoculation techniques for fusarium ear rot and fumonisin contamination of corn. Plant Disease. 2003;87(2):147–53. doi: 10.1094/PDIS.2003.87.2.147 30812919

48. Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110–6.

49. du Plessis H, van den Berg J, Ota N, Kriticos DJ. Spodoptera frugiperda. CSIRO-InSTePP Pest Geography [Internet]. 2018.

50. Early R, Gonzalez-Moreno P, Murphy ST, Day R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. Neobiota. 2018;(40):25–50.

51. Ramirez-Cabral NYZ, Kumar L, Shabani F. Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. J Agr Sci-Cambridge. 2017;155(8):1219–38.

52. Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, et al. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol Evol. 2012;3(1):53–64.

53. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. B Am Meteorol Soc. 2015;96(12):2059–77. doi: 10.1175/Bams-D-14-00110.1


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#