#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Experimental study of the temporal profile of breath alcohol concentration in a Chinese population after a light meal


Autoři: Y. C. Li aff001;  N. N. Sze aff002;  S. C. Wong aff001;  K. L. Tsui aff003;  F. L. So aff004
Působiště autorů: Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China aff001;  Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China aff002;  Accident and Emergency Department, Pok Oi Hospital, Yuen Long, Hong Kong SAR, China aff003;  Accident and Emergency Department, Tuen Mun Hospital, Tuen Mun, Hong Kong SAR, China aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221237

Souhrn

In forensic science, the Widmark equation is widely used to deduce the blood alcohol concentration (BAC) at different time points. But the linear model specified by Widmark might be deficient in predicting the breath alcohol concentration (BrAC) at different time points, and extrapolating the peak and the corresponding time. In order to establish the temporal profile of alcohol concentration which captures the effects of non-linear nature of alcohol absorption, elimination, and peak, in particular of Chinese population after a light meal, a drinking experiment was conducted in this study. To achieve this, a double-blind drinking experiment was conducted to measure the BrAC of 52 Chinese participants after a light meal in this study. Prior to the experiment, all participants were required to abstain from food for 4 hours, more importantly, from alcohol and sedatives for 24 hours. A standard light meal was provided about 30 minutes prior to the alcohol intake in the experiment. The BrAC was measured at a 10-minute interval during the absorption phase and 30-minute interval during the elimination phase respectively. The measurements were stopped when the BrAC fell to 0.010 mg/100 ml or below, or more than 8 hours after the alcohol intake. Then, the temporal profiles of BrAC, assuming linear and non-linear relationships, were established using Full Bayesian approach. The linear component indicated the alcohol impairment in normal social function, with which a light meal is usually accompanied with drinking. On the other hand, the non-linear (gamma distribution) part replicated the absorption phase, elimination phase, and the peak of alcohol concentration. The proposed model well performed than the conventional regression model. Additionally, the confounding factors including gender, body weight, and dosage were controlled for. Results should be useful for the development of cost-effective enforcement measures that could deter against drink driving.

Klíčová slova:

Biology and life sciences – Nutrition – Diet – Physiology – Physiological parameters – Anatomy – Body fluids – Blood – Digestive system – Gastrointestinal tract – Stomach – Psychology – Addiction – Alcoholism – Medicine and health sciences – Alcohol consumption – Body weight – Pharmaceutics – Dose prediction methods – Mental health and psychiatry – Substance-related disorders – Public and occupational health – Social sciences – Sociology – Criminology – Police – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Alcohols – Organic chemistry – People and places – Population groupings – Professions


Zdroje

1. Robertson MD, Drummer OH. Responsibility analysis–a methodology to study the effects of drugs in driving. Accid Anal Prev 1994; 26: 243–247. 8198693

2. Kim K, Nitz L, Richardson J, Li L. Personal and behavioral predictors of automobile crash and injury severity. Accid Anal Prev 1995; 27: 469–481. 7546061

3. Drummer OH, Gerostamoulos J, Batziris H, Chu M, Caplehorn J, Robertson MD, et al. The involvement of drugs in drivers of motor vehicles killed in Australian road traffic crashes. Accid Anal Prev 2004; 36: 239–248. 14642878

4. Elliott S, Woolacott H, Braithwaite R. The prevalence of drugs and alcohol found in road traffic fatalities: A comparative study of victims. Sci Justice 2009; 49: 19–23. doi: 10.1016/j.scijus.2008.06.001 19418924

5. Li YC, Sze NN, Wong SC, Tsui KL, So FL. Effects of drink driving on crash risk based on random breath test data. Hong Kong J Emerg Med 2013; 20: 146–154.

6. Li YC, Sze NN, Wong SC. Spatial-temporal analysis of drink-driving patterns in Hong Kong. Accid Anal Prev 2013; 59: 415–424. doi: 10.1016/j.aap.2013.06.033 23896045

7. Chen F, Chen S, Ma X. Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. J Safety Res 2018: 65: 153–159. doi: 10.1016/j.jsr.2018.02.010 29776524

8. Ma X, Chen S, Chen F. Multivariate space-time modeling of crash frequencies by injury severity levels. Anal Methods in Accid Res 2017: 15: 29–40.

9. Ramaekers JG, Berghaus G, van Laar M, Drummer OH. Dose related risk of motor vehicle crashes after cannabis use. Drug Alcohol Depen 2004; 73: 109–119.

10. Denney RC. Factors affecting non-prosecution of over the limit motorists in Great Britain, Proceedings of the 13th int. Conf. on Alcohol. Drugs & Traffic Safety 1995, pp.573–576. Adelaide.

11. Kim JH, Wong AH, Goggins WB, Lau L, Griffiths SM. Drink driving in Hong Kong: the competing effects of random breath testing and alcohol tax reductions. Addiction 2013; 108: 1217–1228. doi: 10.1111/add.12116 23316754

12. Li YC, Sze NN, Wong SC. Effective measures for combating drink-driving offences: an attitudinal model in Hong Kong. Transportmetrica A: Transport Science 2014; 10: 722–739.

13. Audit Commission of HKSAR. Administration of road safety measures, www.aud.gov.hk/pdf_e/e60ch02.pdf (2015, accessed 2 April 2015).

14. Widmark EMP. Principles and Applications of Medicolegal Alcohol Determination. California: Biomedical Publications, 1981.

15. Andreasson R, Jones AW. Erik M.P. Widmark (1889–1945): Swedish pioneer in forensic alcohol toxicology. Forensic Sci Int 1995; 72: 1–14. doi: 10.1016/0379-0738(94)01687-z 7705730

16. Jones AW. Evidence-based survey of the elimination rates of ethanol from blood with applications in forensic casework. Forensic Sci Int 2010; 200:1–20. doi: 10.1016/j.forsciint.2010.02.021 20304569

17. Barbour AD. Simplified estimation of Widmark “r” values by the method of Forrest. Sci Justice 2001; 41: 53–54. doi: 10.1016/S1355-0306(01)71849-7 11215299

18. Gullberg RG. Estimating the uncertainty associated with Widmark’s equation as commonly applied in forensic toxicology. Forensic Sci Int 2007; 172: 33–39. doi: 10.1016/j.forsciint.2006.11.010 17210238

19. Tam TWM, Yang CT, Fung WK, Mok VKK. Widmark factors for local Chinese in Hong Kong: A statistical determination on the effects of various physiological factors. Forensic Sci Int 2005; 151: 23–29. doi: 10.1016/j.forsciint.2004.06.032 15935939

20. Swift R. Direct measurement of alcohol and its metabolites. Addiction 2003; 98: 73–80. 14984244

21. Jachau K, Sauer S, Krause D, Wittig K. Comparative regression analysis of concurrent elimination-phase blood and breath alcohol concentration measurements to determine hourly degradation rate. Forensic Sci Int 2004; 143: 115–120. doi: 10.1016/j.forsciint.2004.03.023 15240030

22. Pavlic M, Grubwieser P, Libiseller K, Rabl W. Elimination rates of breath alcohol. Forensic Sci Int 2007; 171: 16–21. doi: 10.1016/j.forsciint.2006.09.008 17064864

23. Schechtman E, Shinar D. An analysis of alcohol breath tests results with portable and desktop breath testers as surrogates of blood alcohol level. Accid Anal Prev 2011; 43: 2188–2194. doi: 10.1016/j.aap.2011.06.013 21819851

24. Jones AW. Electrochemical measurement of breath-alcohol concentration: precision and accuracy in relation to blood levels. Clin Chim Acta 1985; 146: 175–183. doi: 10.1016/0009-8981(85)90056-7 3987047

25. Holford NH. Clinical pharmacokinetics of ethanol. Clin Pharmacokinet 1987; 13: 273–292. doi: 10.2165/00003088-198713050-00001 3319346

26. Mumenthaler MS, Taylor JL, Yesavage JA. Ethanol pharmacokinetics in white women: nonlinear model fitting versus zero-order elimination analyses. Alcohol Clin Exp Res 2000; 24: 1353–1362. 11003200

27. Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption—II. Addiction 1993; 88: 791–804. 8329970

28. Wrieden WL, Anderson AS. Measurement of food and alcohol intake in relation to chronic liver disease. Stat Methods Med Res 2009; 18: 285–301. doi: 10.1177/0962280208094694 19036908

29. Barquin J, Luna Jde D, Hernandez AF. A controlled study of the time-course of breath alcohol concentration after moderate ingestion of ethanol following a social drinking session. Forensic Sci Int 2008; 177: 140–145. doi: 10.1016/j.forsciint.2007.11.012 18178047

30. Yang CT, Fung WK, Tam TWM. Alcohol study on blood concentration estimation: Reliability and applicability of Widmark formula on Chinese male population. Leg Med 2009; 11: 163–167.

31. Department of Mental Health and Substance Dependence Noncommunicable Diseases and Mental Health Cluster. World Health Organization, International guide for monitoring alcohol consumption and related harm, Geneva, 2000.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#