#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Does a spinal implant alter dual energy X-ray absorptiometry body composition measurements?


Autoři: Pei-Lin Hsiao aff001;  Shu-Feng Hsu aff002;  Po-Han Chen aff003;  Hsiao-Wei Tsai aff001;  Hsin-Ying Lu aff001;  Yue-Sheng Wang aff001;  Li-Wen Lee aff001
Působiště autorů: Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan aff001;  Department of Nursing, Chang Gung Memorial Hospital, Chiayi, Taiwan aff002;  Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Yunlin, Taiwan aff003;  Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Taiwan aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222758

Souhrn

Background

Most manufacturer manuals do not verify the use of dual energy X-ray absorptiometry for body composition analysis in subjects with a metal implant. This study aimed to quantify the effects of a spinal implant on body composition, and to determine whether unadjusted lean mass estimates are valid for patients with a spinal implant.

Methods

A total of 30 healthy subjects were recruited. Three consecutive scans were performed for each participant, one with and two without extraneous spinal implant, without repositioning between scans. Lean, fat and bone estimates in the total body, trunk and limb were measured.

Results

Precision errors for all total and regional body compositions were within the recommended ranges. Bone masses in the trunk and total body were significantly increased with spinal implant, and the increases exceeded the least significant change. For total and regional lean and fat estimates, the measurements between subjects with and without metal implants were in substantial to almost perfect agreement and the differences were not significant and did not exceed the least significant change.

Conclusions

Spinal metal artifacts significantly increased the total body and trunk bone mass but the differences in lean- and fat-related estimates at total and regional body levels and all estimates in the extremity remained within the clinical acceptable range. Thus, a spinal implant may not compromise screening of patients for fat and lean masses using dual energy X-ray absorptiometry. Application of image reconstruction or a filtering algorithm may help reduce the effect of metallic artifacts and further study is needed.

Klíčová slova:

Biology and life sciences – Bioengineering – Biotechnology – Medical devices and equipment – Medical implants – Titanium implants – Biochemistry – Lipids – Fats – Anatomy – Biological tissue – Connective tissue – Engineering and technology – Assistive technologies – Prosthetics – Medicine and health sciences – Bone – Bone density – Diagnostic medicine – Diagnostic radiology – Radiology and imaging – Research and analysis methods – Research assessment – Altmetrics – Article-level metrics – Imaging techniques – Bone imaging – X-ray radiography – Physical sciences – Chemistry – Chemical elements – Titanium


Zdroje

1. Lukaski HC. Soft tissue composition and bone mineral status: evaluation by dual-energy X-ray absorptiometry. J Nutr. 1993;123(2 Suppl):438–43.

2. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol. 1996;271(6 Pt 1):E941–51.

3. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12(1):45–51. 8838836

4. Ng BK, Liu YE, Wang W, Kelly TL, Wilson KE, Schoeller DA, et al. Validation of rapid 4-component body composition assessment with the use of dual-energy X-ray absorptiometry and bioelectrical impedance analysis. Am J Clin Nutr. 2018;108(4):708–15. doi: 10.1093/ajcn/nqy158 30099474

5. Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17(6):1281–6.

6. Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52(1):71–4. doi: 10.1016/j.archger.2010.02.002 20207030

7. Giangregorio LM, Webber CE. Effects of metal implants on whole-body dual-energy x-ray absorptiometry measurements of bone mineral content and body composition. Can Assoc Radiol J. 2003;54(5):305–9; quiz 270–1. 14689806

8. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038. doi: 10.1371/journal.pone.0007038 19753111

9. Diessel E, Fuerst T, Njeh CF, Tylavsky F, Cauley J, Dockrell M, et al. Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices. J Appl Physiol (1985). 2000;89(2):599–605.

10. Shepherd JA, Lu Y, Wilson K, Fuerst T, Genant H, Hangartner TN, et al. Cross-calibration and minimum precision standards for dual-energy X-ray absorptiometry: the 2005 ISCD Official Positions. J Clin Densitom. 2006;9(1):31–6. doi: 10.1016/j.jocd.2006.05.005 16731429

11. Shepherd JA, Lu Y. A generalized least significant change for individuals measured on different DXA systems. J Clin Densitom. 2007;10(3):249–58. doi: 10.1016/j.jocd.2007.05.002 17616413

12. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68. 2720055

13. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. 18839484

14. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10. 2868172

15. Watts NB. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int. 2004;15(11):847–54. doi: 10.1007/s00198-004-1681-7 15322740

16. Messina C, Bandirali M, Sconfienza LM, D'Alonzo NK, Di Leo G, Papini GD, et al. Prevalence and type of errors in dual-energy x-ray absorptiometry. Eur Radiol. 2015;25(5):1504–11. doi: 10.1007/s00330-014-3509-y 25428701

17. Hangartner TN. A study of the long-term precision of dual-energy X-ray absorptiometry bone densitometers and implications for the validity of the least-significant-change calculation. Osteoporos Int. 2007;18(4):513–23. doi: 10.1007/s00198-006-0280-1 17136486

18. Cawkwell GD. Movement Artifact and Dual X-ray Absorptiometry. Journal of Clinical Densitometry. 1998;1(2):141–7.

19. Madsen OR, Egsmose C, Lorentzen JS, Lauridsen UB, Sorensen OH. Influence of orthopaedic metal and high-density detection on body composition as assessed by dual-energy X-ray absorptiometry. Clin Physiol. 1999;19(3):238–45. 10361614

20. Griffiths MR, Noakes KA, Pocock NA. Correcting the magnification error of fan beam densitometers. J Bone Miner Res. 1997;12(1):119–23. doi: 10.1359/jbmr.1997.12.1.119 9240734

21. Cole JH, Scerpella TA, van der Meulen MC. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are? J Clin Densitom. 2005;8(1):57–64. 15722588


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#