Development of UV spectrophotometry methods for concurrent quantification of amlodipine and celecoxib by manipulation of ratio spectra in pure and pharmaceutical formulation


Autoři: Mahesh Attimarad aff001;  Venugopla Katarigatta Narayanswamy aff001;  Bandar Essa Aldhubaib aff001;  Nagaraja SreeHarsha aff001;  Anroop Balachandran Nair aff001
Působiště autorů: Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa, KSA aff001;  Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222526

Souhrn

Recently, the United States Food and Drug Administration approved a new oral dosage preparation of amlodipine besylate (AML) and celecoxib (CEL) for the management of hypertension and osteoarthritis. However, no simultaneous estimation procedures for these two analytes have been described. Hence, two simple, accurate, and precise ultraviolet spectroscopic procedures that manipulated the ratio spectra were established for concurrent quantification of AML and CEL using ethanol as a solvent. The first method involves determining the peak-to-trough amplitude difference of the ratio spectra of AML and CEL. The second method involves determining the peak amplitude of the ratio first derivative (Δλ 4 nm) spectra of AML and CEL at 334.2 nm and 254.2 nm, correspondingly. Both methods showed linearity in the range of 1–6 μg mL-1 for AML and 5–40 μg mL-1 for CEL with an excellent correlation coefficient (<0.999). The proposed procedures were validated by following the International Conference on Harmonization guidelines for accuracy, precision, selectivity, recovery, and stability studies. It is evident from the low %RSD and %RE that both analytical procedures were found to be accurate and precise, respectively. The percent recovery of AML and CEL from the formulation was found to be 99.79% and 99.34% using the ratio-difference method and 100.13% and 99.70% using the ratio first-derivative method, with a low percent relative standard deviation. Further, the proposed techniques permit concurrent quantification of AML and CEL in different concentration ratios without interference from each other; hence, these techniques can be adopted for regular quality-control studies.

Klíčová slova:

Physical sciences – Chemistry – Chemical compounds – Organic compounds – Alcohols – Ethanol – Organic chemistry – Physics – Electromagnetic radiation – Absorption spectra – Light – Ultraviolet radiation – Materials science – Materials – Mixtures – Medicine and health sciences – Rheumatology – Arthritis – Osteoarthritis – Vascular medicine – Blood pressure – Hypertension – Pharmacology – Drugs – Analgesics – NSAIDs – Antihypertensive drugs – Pain management


Zdroje

1. Sweetman SC, Martindale, The Complete Drug Reference. 37th ed. London, UK: The Pharmaceutical Press; 2011.

2. Stepien O, Zhang Y, Zhu D, Marche P. Dual mechanism of action of amlodipine in human vascular smooth muscle cells. J Hypertens. 2002; 20(1): 95–102. https://www.ncbi.nlm.nih.gov/pubmed/11791031 doi: 10.1097/00004872-200201000-00014 11791031

3. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003; 81: 646–656. http://www.who.int/iris/handle/10665/72057 14710506

4. Puljak L, Marin A, Vrdoljak D, Markotic F, Utrobicic A, Tugwell P. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017; 5. Art. No.: CD009865. https://doi.org/10.1002/14651858.CD009865.pub2.

5. Shigh G, Miller JD, Lee FH, Pettitt D, Russell MW. Prevalence of cardiovascular disease risk factors among US adults with self-reported osteoarthritis: data from the Third National Health and Nutrition Examination Survey. Am J Manag Care. 2002; 8(15 Suppl): S383—S391. https://www.ncbi.nlm.nih.gov/pubmed/12416788 12416788

6. Nissen SE, Yeomans ND, Solomon DH, Lüscher TF, Libby P, Husni ME, et al. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 2016; 375: 2519–2529. doi: 10.1056/NEJMoa1611593 27959716

7. Angeli F, Trapasso M, Signorotti S, Verdecchia P, Reboldi G. Amlodipine and celecoxib for treatment of hypertension and osteoarthritis pain. Expert Rev Clin Pharmacol. 2018; 11: 1073–1084. doi: 10.1080/17512433.2018.1540299 30362840

8. Smith SM, Cooper-DeHoff RM. Fixed-Dose Combination Amlodipine/Celecoxib (Consensi) for Hypertension and Osteoarthritis. Am J Med. 2019; 132(2): 172–174. doi: 10.1016/j.amjmed.2018.08.027 30240679

9. Rahman N. Nasrul Hoda, M. Validated spectrophotometric methods for the determination of amlodipine besylate in drug formulations using 2,3-dichloro 5,6-dicyano 1,4-benzoquinone and ascorbic acid. J. Pharmabiomed. Anal. 2003; 31: 381–392. https://doi.org/10.1016/S0731-7085(02)00610-6

10. Rahman N. Singh M. Hoda MN. Application of oxidants to the spectrophotometric determination of amlodipine besylate in pharmaceutical formulations. IL Farm. 2004; 59: 913–919. https://doi.org/10.1016/j.farmac.2004.07.009

11. Abdel-Wadood HM. Mohamed NA. Mahmoud AM. Validated spectrofluorometric methods for determination of amlodipine besylate in tablets. Spectrochim. Acta Part A Mol Biomol Spectrosc. 2008; 70: 564–570. https://doi.org/10.1016/j.saa.2007.07.055

12. Zarghi A. Foroutan S. Shafaati A. Khoddam A. Validated HPLC method for determination of amlodipine in human plasma and its application to pharmacokinetic studies. IL Farm. 2005; 60: 789–792. doi: 10.1016/j.farmac.2005.06.012 16038908

13. Klinkenberg R. Streel B. Ceccato A. Development and validation of a liquid chromatographic method for the determination of amlodipine residues on manufacturing equipment surfaces. J Pharm Biomed Anal. 2003; 32: 345–352. doi: 10.1016/s0731-7085(03)00109-2 12763545

14. Bahrami G. Mirzaeei S. Simple and rapid HPLC method for determination of amlodipine in human serum with fluorescence detection and its use in pharmacokinetic studies. J Pharm Biomed Anal. 2004; 36: 163–168. doi: 10.1016/j.jpba.2004.05.016 15351061

15. LijuanWang WenxiaLiu, ZunjianZhang YuanTian, Validated LC–MS/MS method for the determination of amlodipine enantiomers in rat plasma and its application to a stereoselective pharmacokinetic study. J Pharmace Biomed Analysis. 2018; 58(5): 74–81. https://doi.org/10.1016/j.jpba.2004.05.016

16. Trang NTO, Hop NV, Chau NDG, Tran TB. Simultaneous Determination of Amlodipine, Hydrochlorothiazide, and Valsartan in Pharmaceutical Products by a Combination of Full Spectrum Measurement and Kalman Filter Algorithm. Adv Mater Sci Eng. 2019, Article ID 5719651, 9 pages. https://doi.org/10.1155/2019/5719651

17. Meyyanathan S. Suresh B. HPTLC Method for the simultaneous determination of amlodipine and benazepril in their formulations. J Chromatogr Sci. 2005; 43:73–75. doi: 10.1093/chromsci/43.2.73 15826364

18. Djaalab E, Mohamed E, Samar H, Zougar S, Kherrat R. Electrochemical Biosensor for the Determination of Amlodipine Besylate Based on Gelatin–Polyaniline Iron Oxide Biocomposite Film. Catalysts. 2018; 8(6): 233. https://doi.org/10.3390/catal8060233

19. Arkan E, Karimi Z, Shamsipur M. Saber R. An Electrochemical Senor for Determination of Amlodipine Besylate Based on Graphene–Chitosan nano Composite Film Modified Glassy Carbon Electrode and Application in biological and pharmaceutical samples. J reports Pharm Sci. 2014; 3: 99–107. http://www.jrpsjournal.com/temp/JRepPharmaSci3199-2598842_071308.pdf

20. Mansano GR, Eisele APP, Dall’Antonia LH, Afonso S, Sartori ER. Electroanalytical application of a boron-doped diamond electrode: Improving the simultaneous voltammetric determination of amlodipine and valsartan in urine and combined dosage forms. J Electroanal Chem. 2015; 738: 188–194. http://dx.doi.org/10.1016/j.jelechem.2014.11.034

21. Rajpurohit AS, Bora DK, Srivastava AK. Simultaneous determination of amlodipine and losartan using an iron metal–organic framework/mesoporous carbon nanocomposite-modified glassy carbon electrode by differential pulse voltammetry. Analytical Methods. 2018; 45: 5423–5438. http://doi.org/10.1039/C8AY01553H

22. Attimarad M, Nagaraja SH, Al-Dhubaib BE, Nair AB, Venugopala KN. Capillary Electrophoresis: MEKC assay method for simultaneous determination of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in tablets. Indian J Pharm Educ Res. 2016; 50(2 Suppl.): 188–195, http://doi.org/10.5530/ijper.50.2.35

23. Adriana M, Gabriel H, Alexandru VR, Ștefana S, Ruxandra S, Hajnal K. Simultaneous determination of amlodipine and telmisartan from pharmaceutical products by way of capillary electrophoresis. Curr Issues Pharm Med Sci. 2016; 29(1): 42–45. http://doi.org/10.1515/cipms-2016-0010

24. Ashfaq Muhammad, Akhtar Tazeem, Mustafa Ghulam, Danish Muhammad, Razzaq Syed Naeem, & Nazar Muhammad Faizan. Simultaneous estimation of rosuvastatin and amlodipine in pharmaceutical formulations using stability indicating HPLC method. Braz J Pharm Sci. 2014; 50(3): 629–638. https://dx.doi.org/10.1590/S1984-82502014000300023

25. Patel DB, Mehta FA, Bhatt KK. Simultaneous Estimation of Amlodipine Besylate and Indapamide in a Pharmaceutical Formulation by a High Performance Liquid Chromatographic (RP-HPLC) Method. Sci Pharm. 2012; 80(3): 581–590. doi: 10.3797/scipharm.1203-07 23008807

26. Moussa BA, El-Zaher AA, Mahrouse MA, Ahmed MS. Simultaneous determination of amlodipine besylate and atorvastatin calcium in binary mixture by spectrofluorimetry and HPLC coupled with fluorescence detection. Anal Chem Insights. 2013; 8: 107–115. doi: 10.4137/ACI.S12921 24250220

27. Saha RN, Sajeev C, Jadhav PR, Patil SP, Srinivasan N. Determination of celecoxib in pharmaceutical formulations using UV spectrophotometry and liquid chromatography. J Pharm Biomed Anal. 2002; 28: 741–751. doi: 10.1016/s0731-7085(01)00678-1 12008154

28. Gouda AA, Mohamed I. El-Sayed K, Amin AS, El-Sheikh R. Spectrophotometric and spectrofluorometric methods for the determination of non-steroidal anti-inflammatory drugs: A review. Arab J Chem. 2013; 6(2): 145–163. https://doi.org/10.1016/j.arabjc.2010.12.006

29. Chandran S, Jadhav PR, Kharwade PB, Saha RN. Rapid and sensitive spectrofluorimetric method for the estimation of celecoxib and flurbiprofen. Indian J Pharm Sci. 2006; 68 (1): 20–25. https://doi.org/10.4103/0250-474X.22958

30. Emami J, Fallah R, Ajami A. A rapid and sensitive HPLC method for the analysis of celecoxib in human plasma: application to the pharmacokinetic studies. DARU. 2008; 16: 211–217. http://daru.tums.ac.ir/index.php/daru/article/view/501/390

31. Jadhav PS, Jamkar PM, Avachat AM. Stability indicating method development and validation for simultaneous estimation of atorvastatin calcium and celecoxib in bulk and niosomal formulation by RP-HPLC. Braz J Pharm Sci. 2015; 51(3): 653–661. http://dx.doi.org/10.1590/S1984-82502015000300017.

32. Reddy H, Ravi Kumar B, Maram R, Murthy S. Stability-Indicating HPLC Method for Quantification of Celecoxib and Diacerein Along With Its Impurities in Capsule Dosage Form. J Chromatogr Sci. 2015; 53(1): 144–153. doi: 10.1093/chromsci/bmu031 24837233

33. Park MS, Shim WS, Yim SV, Lee KT. Development of simple and rapid LC–MS/MS method for determination of celecoxib in human plasma and its application to bioequivalence study. J Chromatogr B. 2012; 902: 137–141. https://doi.org/10.1016/j.jchromb.2012.06.016

34. Patel NP, Sanyal M, Shrivastav PS, Patel BN. Estimation of celecoxib in human plasma by rapid and selective LC-MS/MS method for a bioequivalence study. Int J Pharm Pharm Sci. 2018; 10(10): 16–22. https://doi.org/10.22159/ijpps.2018v10i10.28289

35. Srinivasu MS, Rao DS, Reddy GO. Determination of celecoxib, a COX-2 inhibitor, in pharmaceutical dosage forms by MEKC. J Pharm Biomed Anal. 2002; 28: 493–500. doi: 10.1016/s0731-7085(01)00670-7 12008128

36. Hsieh YH, Lin SJ, Chen SH. Simultaneous determination of celecoxib, meloxicam, and rofecoxib using capillary electrophoresis with surfactant and application in drug formulations. J Sep Sci. 2006; 29(7): 1009–17. https://doi.org/10.1002/jssc.200500412 16833234

37. Sánchez Rojas C F. Bosch Ojeda. Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008: A review, Analytica Chimica Acta, 2009; 635(1): 22–44. doi: 10.1016/j.aca.2008.12.039 19200476

38. Attimarad M, Al-Dhubiab BE, Alhaider IA, Nair AB, Sree Harsha N, Mueen Ahmed K. Simultaneous determination of moxifloxacin and cefixime by first and ratio first derivative ultraviolet spectrophotometry. Chem. Cent. J. 2012; 6: 105–111. doi: 10.1186/1752-153X-6-105 22995678

39. Bhatt NM, Chavada VD, Sanyal M, Shrivastav PS. Manipulating ratio spectra for the spectrophotometric analysis of diclofenac sodium and pantoprazole sodium in laboratory mixtures and tablet formulation. Sci World J. 2014; Article ID 495739, 10 pages. https://doi.org/10.1155/2014/495739.

40. Afkhami A, Bahram M. Successive ratio-derivative spectra as a new spectrophotometric method for the analysis of ternary mixtures. Spectrochim Acta Part A, 2005; 61(5): 869–877. https://doi.org/10.1016/j.saa.2004.06.013

41. Attimarad M, Chohan MS, Balgoname AA. Simultaneous Determination of Moxifloxacin and Flavoxate by RP-HPLC and Ecofriendly Derivative Spectrophotometry Methods in Formulations, Int J Environ Res Public Health. 2019; 16(7): 1196. https://doi.org/10.3390/ijerph16071196

42. Ragno G, Risoli A, Ioele G, Cione E, De Luca M. Photostabilization of 1,4-Dihydropyridine antihypertensives by incorporation into b-cyclodextrin and liposomes. J Nanosci Nanotechnol. 2006; 6: 2979–2985. doi: 10.1166/jnn.2006.407 17048507

43. Ragno G, Vetuschi C, Risoli A, Ioele G. Application of a classical least squares regression method to the assay of 1,4-dihydropyridine antihypertensives and their photoproducts. Talanta 2003; 59(2): 357–382. https://doi.org/10.1016/S0039-9140(02)00526-X


Článek vyšel v časopise

PLOS One


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata