Agreement between the spatiotemporal gait parameters from two different wearable devices and high-speed video analysis

Autoři: Felipe García-Pinillos aff001;  Pedro Á. Latorre-Román aff002;  Víctor M. Soto-Hermoso aff003;  Juan A. Párraga-Montilla aff002;  Antonio Pantoja-Vallejo aff004;  Rodrigo Ramírez-Campillo aff005;  Luis E. Roche-Seruendo aff006
Působiště autorů: Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile aff001;  Department of Corporal Expression, University of Jaen, Jaen, Spain aff002;  Sport and Health University Research Center (iMUDS), University of Granada, Granada, Spain aff003;  Department of Pedagogy, University of Jaen, Jaen, Spain aff004;  Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile aff005;  Universidad San Jorge, Villanueva de Gallego, Zaragoza, Spain aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222872


This study aimed to evaluate the concurrent validity of two different inertial measurement units for measuring spatiotemporal parameters during running on a treadmill, by comparing data with a high-speed video analysis (VA) at 1,000 Hz. Forty-nine endurance runners performed a running protocol on a treadmill at comfortable velocity (i.e., 3.25 ± 0.36 m.s-1). Those wearable devices (i.e., Stryd™ and RunScribe™ systems) were compared to a high-speed VA, as a reference system for measuring spatiotemporal parameters (i.e. contact time [CT], flight time [FT], step frequency [SF] and step length [SL]) during running at comfortable velocity. The pairwise comparison revealed that the Stryd™ system underestimated CT (5.2%, p < 0.001) and overestimated FT (15.1%, p < 0.001) compared to the VA; whereas the RunScribe™ system underestimated CT (2.3%, p = 0.009). No significant differences were observed in SF and SL between the wearable devices and VA. The intra class correlation coefficient (ICC) revealed an almost perfect association between both systems and high-speed VA (ICC > 0.81). The Bland-Altman plots revealed heteroscedasticity of error (r2 = 0.166) for the CT from the Stryd™ system, whereas no heteroscedasticity of error (r2 < 0.1) was revealed in the rest of parameters. In conclusion, the results obtained suggest that both foot pods are valid tools for measuring spatiotemporal parameters during running on a treadmill at comfortable velocity. If the limits of agreement of both systems are considered in respect to high-speed VA, the RunScribe™ seems to be a more accurate system for measuring temporal parameters and SL than the Stryd™ system.

Klíčová slova:

Accelerometers – Equipment – Gait analysis – Inertia – Measurement equipment – Research validity – Running – Feet


1. Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sport Med—Open. 2015;1: 8. doi: 10.1186/s40798-015-0007-y 27747844

2. Tartaruga MP, Brisswalter J, Peyré-Tartaruga LA, Ávila AOV, Alberton CL, Coertjens M, et al. The relationship between running economy and biomechanical variables in distance runners. Res Q Exerc Sport. 2012;83: 367–375. doi: 10.1080/02701367.2012.10599870 22978185

3. Anderson T. Biomechanics and running economy. Sport Med. Springer International Publishing; 1996;22: 76–89.

4. Padulo J, Degortes N, Migliaccio GM, Attene G, Smith L, Salernitano G, et al. Footstep manipulation during uphill running. Int J Sports Med. 2013;34: 244–7. doi: 10.1055/s-0032-1323724 22972239

5. Padulo J, Annino G, Migliaccio GM, DʼOttavio S, Tihanyi J. Kinematics of Running at Different Slopes and Speeds. Journal of Strength and Conditioning Research. 2012. pp. 1331–1339. doi: 10.1519/JSC.0b013e318231aafa 22126973

6. Schubert AG, Kempf J, Heiderscheit BC. Influence of stride frequency and length on running mechanics: a systematic review. Sports Health. 2014;6: 210–7. doi: 10.1177/1941738113508544 24790690

7. Luedke LE, Heiderscheit BC, Williams DSB, Rauh MJ. Influence of step rate on shin injury and anterior knee pain in high school runners. Med Sci Sports Exerc. 2016;48: 1244–50. doi: 10.1249/MSS.0000000000000890 26818150

8. Norris M, Anderson R, Kenny IC. Method analysis of accelerometers and gyroscopes in running gait: A systematic review. Proc Inst Mech Eng Part P J Sport Eng Technol. SAGE PublicationsSage UK: London, England; 2014;228: 3–15. doi: 10.1177/1754337113502472

9. García-Pinillos F, Roche-Seruendo LE, Marcen-Cinca N, Marco-Contreras LA, Latorre-Román PÁA. Absolute reliability and concurrent validity of the Stryd system for the assessment of running stride kinematics at different velocities. J Strenght Cond Res. 2018;in press: 1–8. doi: 10.1519/JSC.0000000000002595 29781934

10. Gindre C, Lussiana T, Hebert-Losier K, Morin J-B. Reliability and validity of the Myotest® for measuring running stride kinematics. J Sport Sci. 2015; 1–7. doi: 10.1080/02640414.2015.1068436 26177053

11. Chew D-K, Ngoh KJ-H, Gouwanda D, Gopalai AA. Estimating running spatial and temporal parameters using an inertial sensor. Sport Eng. Springer London; 2018;21: 115–122. doi: 10.1007/s12283-017-0255-9

12. Gouttebarge V, Wolfard R, Griek N, Ruiter CJ de, Boschman JS, Dieën JH van. Reproducibility and Validity of the Myotest for Measuring Step Frequency and Ground Contact Time in Recreational Runners. J Hum Kinet. 2015;45: 19–26. doi: 10.1515/hukin-2015-0003 25964806

13. Padulo J, Chamari K, Ardigò LP. Walking and running on treadmill: the standard criteria for kinematics studies. Muscles Ligaments Tendons J. CIC Edizioni Internazionali; 2014;4: 159–62. 25332929

14. Schieb DA. Kinematic accommodation of novice treadmill runners. Res Q Exerc Sport. Taylor & Francis Group; 1986;57: 1–7.

15. Lavcanska V, Taylor NF, Schache AG. Familiarization to treadmill running in young unimpaired adults. Hum Mov Sci. 2005;24: 544–557. doi: 10.1016/j.humov.2005.08.001 16176843

16. Radzak KN, Putnam AM, Tamura K, Hetzler RK, Stickley CD. Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait Posture. Elsevier; 2017;51: 268–274. doi: 10.1016/j.gaitpost.2016.11.005 27842295

17. Austin C, Hokanson J, McGinnis P, Patrick S, Austin CL, Hokanson JF, et al. The Relationship between Running Power and Running Economy in Well-Trained Distance Runners. Sports. Multidisciplinary Digital Publishing Institute; 2018;6: 142. doi: 10.3390/sports6040142 30404176

18. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41: 3–13. doi: 10.1249/MSS.0b013e31818cb278 19092709

19. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. Elsevier; 2016;15: 155–63. doi: 10.1016/j.jcm.2016.02.012 27330520

20. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33: 159–174. 843571

21. Cohen J. Statistical power analysis for the behavioral sciences. Statistical Power Analysis for the Behavioral Sciences. 1988. doi: 10.1234/12345678

22. Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995;346: 1085–1087. doi: 10.1016/s0140-6736(95)91748-9 7564793

23. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sport Med. Springer International Publishing; 1998;26: 217–238. doi: 10.2165/00007256-199826040-00002 9820922

24. Lee MM, Song CH, Lee KJ, Jung SW, Shin DC, Shin SH. Concurrent validity and test-retest reliability of the OptoGait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J Phys Ther Sci. The Society of Physical Therapy Science; 2014;26: 81–5. doi: 10.1589/jpts.26.81 24567681

25. Lienhard K, Schneider D, Maffiuletti NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 2013;35: 500–4. doi: 10.1016/j.medengphy.2012.06.015 22818403

26. Lee M, Song C, Lee K, Shin D, Shin S. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients. Med Sci Monit. International Scientific Information, Inc.; 2014;20: 1210–9. doi: 10.12659/MSM.890658 25017613

27. Nakayama Y, Kudo K, Ohtsuki T. Variability and fluctuation in running gait cycle of trained runners and non-runners. Gait Posture. 2010;31: 331–335. doi: 10.1016/j.gaitpost.2009.12.003 20056419

28. Riley PO, Dicharry J, Franz J, Della Croce U, Wilder RP, Kerrigan DC. A kinematics and kinetic comparison of overground and treadmill running. Med Sci Sports Exerc. 2008;40: 1093–100. doi: 10.1249/MSS.0b013e3181677530 18460996

29. Balsalobre-Fernández C, Agopyan H, Morin J-B. The validity and reliability of an iPhone app for measuring running mechanics. J Appl Biomech. Human KineticsChampaign, Illinois, USA; 2017;33: 222–226. doi: 10.1123/jab.2016-0104 27918692

30. Esculier JF, Silvini T, Bouyer LJ, Roy JS. Video-based assessment of foot strike pattern and step rate is valid and reliable in runners with patellofemoral pain. Phys Ther Sport. Churchill Livingstone; 2018;29: 108–112. doi: 10.1016/j.ptsp.2016.11.003 28666810

31. Dingenen B, Barton C, Janssen T, Benoit A, Malliaras P. Test-retest reliability of two-dimensional video analysis during running. Phys Ther Sport. Churchill Livingstone; 2018;33: 40–47. doi: 10.1016/j.ptsp.2018.06.009 30005426

32. Pipkin A, Kotecki K, Hetzel S, Heiderscheit B. Reliability of a Qualitative Video Analysis for Running. J Orthop Sport Phys Ther. 2016;46: 556–561. doi: 10.2519/jospt.2016.6280 27266886

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata