#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Hypertensive APOL1 risk allele carriers demonstrate greater blood pressure reduction with angiotensin receptor blockade compared to low risk carriers


Autoři: Patrick N. Cunningham aff001;  Zhiying Wang aff002;  Megan L. Grove aff002;  Rhonda M. Cooper-DeHoff aff003;  Amber L. Beitelshees aff004;  Yan Gong aff003;  John G. Gums aff003;  Julie A. Johnson aff003;  Stephen T. Turner aff005;  Eric Boerwinkle aff002;  Arlene B. Chapman aff001
Působiště autorů: Section of Nephrology, University of Chicago, Chicago, Illinois, United States of America aff001;  Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America aff002;  Department of Pharmacotherapy and Translational Research, College of Pharmacy and Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America aff003;  Endocrinology, Diabetes, and Nutrition Division, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America aff004;  Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America aff005;  Baylor College of Medicine, Human Genome Sequencing Center, Houston, Texas, United States of America aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221957

Souhrn

Background

Hypertension (HTN) disproportionately affects African Americans (AAs), who respond better to thiazide diuretics than other antihypertensives. Variants of the APOL1 gene found in AAs are associated with a higher rate of kidney disease and play a complex role in cardiovascular disease.

Methods

AA subjects from four HTN trials (n = 961) (GERA1, GERA2, PEAR1, and PEAR2) were evaluated for blood pressure (BP) response based on APOL1 genotype after 4–9 weeks of monotherapy with thiazides, beta blockers, or candesartan. APOL1 G1 and G2 variants were determined by direct sequencing or imputation.

Results

Baseline systolic BP (SBP) and diastolic BP (DBP) levels did not differ based on APOL1 genotype. Subjects with 1–2 APOL1 risk alleles had a greater SBP response to candesartan (-12.2 +/- 1.2 vs -7.5 +/- 1.8 mmHg, p = 0.03; GERA2), and a greater decline in albuminuria with candesartan (-8.3 +/- 3.1 vs +3.7 +/- 4.3 mg/day, p = 0.02). APOL1 genotype did not associate with BP response to thiazides or beta blockers. GWAS was performed to determine associations with BP response to candesartan depending on APOL1 genotype. While no SNPs reached genome wide significance, SNP rs10113352, intronic in CSMD1, predicted greater office SBP response to candesartan (p = 3.7 x 10−7) in those with 1–2 risk alleles, while SNP rs286856, intronic in DPP6, predicted greater office SBP response (p = 3.2 x 10−7) in those with 0 risk alleles.

Conclusions

Hypertensive AAs without overt kidney disease who carry 1 or more APOL1 risk variants have a greater BP and albuminuria reduction in response to candesartan therapy. BP response to thiazides or beta blockers did not differ by APOL1 genotype. Future studies confirming this initial finding in an independent cohort are required.

Klíčová slova:

Biology and life sciences – Computational biology – Genome-wide association studies – Genetics – Genomics – Genome analysis – Human genetics – Genetic loci – Alleles – Heredity – Genetic mapping – Variant genotypes – Anatomy – Renal system – Kidneys – Medicine and health sciences – Vascular medicine – Blood pressure – Hypertension – Pharmacology – Drugs – Antihypertensives – Diuretics


Zdroje

1. Howard G, Lackland DT, Kleindorfer DO, Kissela BM, Moy CS, Judd SE, et al. Racial differences in the impact of elevated systolic blood pressure on stroke risk. JAMA Intern Med. 2013;173(1):46–51. Epub 2012/12/12. doi: 10.1001/2013.jamainternmed.857 23229778.

2. Freedman BI, Kopp JB, Langefeld CD, Genovese G, Friedman DJ, Nelson GW, et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J Am Soc Nephrol. 2010;21(9):1422–6. Epub 2010/08/07. doi: 10.1681/ASN.2010070730 20688934.

3. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010;329(5993):841–5. Epub 2010/07/22. doi: 10.1126/science.1193032 20647424.

4. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet. 2008;40(10):1175–84. Epub 2008/09/17. doi: 10.1038/ng.226 18794856.

5. Ito K, Bick AG, Flannick J, Friedman DJ, Genovese G, Parfenov MG, et al. Increased burden of cardiovascular disease in carriers of APOL1 genetic variants. Circ Res. 2014;114(5):845–50. Epub 2014/01/01. doi: 10.1161/CIRCRESAHA.114.302347 24379297.

6. Mukamal KJ, Tremaglio J, Friedman DJ, Ix JH, Kuller LH, Tracy RP, et al. APOL1 Genotype, Kidney and Cardiovascular Disease, and Death in Older Adults. Arterioscler Thromb Vasc Biol. 2016;36(2):398–403. Epub 2015/12/05. doi: 10.1161/ATVBAHA.115.305970 26634651.

7. Freedman BI, Gadegbeku CA, Bryan RN, Palmer ND, Hicks PJ, Ma L, et al. APOL1 renal-risk variants associate with reduced cerebral white matter lesion volume and increased gray matter volume. Kidney Int. 2016;90(2):440–9. Epub 2016/06/28. doi: 10.1016/j.kint.2016.04.027 27342958.

8. Freedman BI, Langefeld CD, Lu L, Palmer ND, Smith SC, Bagwell BM, et al. APOL1 associations with nephropathy, atherosclerosis, and all-cause mortality in African Americans with type 2 diabetes. Kidney Int. 2015;87(1):176–81. Epub 2014/07/24. doi: 10.1038/ki.2014.255 25054777.

9. Langefeld CD, Divers J, Pajewski NM, Hawfield AT, Reboussin DM, Bild DE, et al. Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial. Kidney Int. 2015;87(1):169–75. Epub 2014/07/17. doi: 10.1038/ki.2014.254 25029429.

10. Ma L, Langefeld CD, Comeau ME, Bonomo JA, Rocco MV, Burkart JM, et al. APOL1 renal-risk genotypes associate with longer hemodialysis survival in prevalent nondiabetic African American patients with end-stage renal disease. Kidney Int. 2016;90(2):389–95. Epub 2016/05/10. doi: 10.1016/j.kint.2016.02.032 27157696.

11. Chen TK, Estrella MM, Vittinghoff E, Lin F, Gutierrez OM, Kramer H, et al. APOL1 genetic variants are not associated with longitudinal blood pressure in young black adults. Kidney Int. 2017;92(4):964–71. Epub 2017/05/27. doi: 10.1016/j.kint.2017.03.028 28545715.

12. Nadkarni GN, Coca SG. APOL1 and blood pressure changes in young adults. Kidney Int. 2017;92(4):793–5. Epub 2017/09/25. doi: 10.1016/j.kint.2017.05.030 28938952.

13. Nadkarni GN, Galarneau G, Ellis SB, Nadukuru R, Zhang J, Scott SA, et al. Apolipoprotein L1 Variants and Blood Pressure Traits in African Americans. J Am Coll Cardiol. 2017;69(12):1564–74. Epub 2017/03/25. doi: 10.1016/j.jacc.2017.01.040 28335839.

14. Gong Y, McDonough CW, Wang Z, Hou W, Cooper-DeHoff RM, Langaee TY, et al. Hypertension susceptibility loci and blood pressure response to antihypertensives: results from the pharmacogenomic evaluation of antihypertensive responses study. Circ Cardiovasc Genet. 2012;5(6):686–91. Epub 2012/10/23. doi: 10.1161/CIRCGENETICS.112.964080 23087401.

15. Turner ST, Boerwinkle E, O’Connell JR, Bailey KR, Gong Y, Chapman AB, et al. Genomic association analysis of common variants influencing antihypertensive response to hydrochlorothiazide. Hypertension. 2013;62(2):391–7. Epub 2013/06/12. doi: 10.1161/HYPERTENSIONAHA.111.00436 23753411.

16. Chapman AB, Schwartz GL, Boerwinkle E, Turner ST. Predictors of antihypertensive response to a standard dose of hydrochlorothiazide for essential hypertension. Kidney Int. 2002;61(3):1047–55. Epub 2002/02/19. doi: 10.1046/j.1523-1755.2002.00200.x 11849460.

17. Turner ST, Schwartz GL, Chapman AB, Beitelshees AL, Gums JG, Cooper-DeHoff RM, et al. Plasma renin activity predicts blood pressure responses to beta-blocker and thiazide diuretic as monotherapy and add-on therapy for hypertension. Am J Hypertens. 2010;23(9):1014–22. Epub 2010/08/21. doi: 10.1038/ajh.2010.98 20725057.

18. Gong Y, Wang Z, Beitelshees AL, McDonough CW, Langaee TY, Hall K, et al. Pharmacogenomic Genome-Wide Meta-Analysis of Blood Pressure Response to beta-Blockers in Hypertensive African Americans. Hypertension. 2016;67(3):556–63. Epub 2016/01/06. doi: 10.1161/HYPERTENSIONAHA.115.06345 26729753.

19. Canzanello VJ, Baranco-Pryor E, Rahbari-Oskoui F, Schwartz GL, Boerwinkle E, Turner ST, et al. Predictors of blood pressure response to the angiotensin receptor blocker candesartan in essential hypertension. Am J Hypertens. 2008;21(1):61–6. Epub 2007/12/20. doi: 10.1038/ajh.2007.24 18091745.

20. Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, Skaar TC, et al. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96(2):175–81. Epub 2014/03/19. doi: 10.1038/clpt.2014.62 24637943.

21. Johnson JA, Boerwinkle E, Zineh I, Chapman AB, Bailey K, Cooper-DeHoff RM, et al. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J. 2009;157(3):442–9. Epub 2009/03/03. doi: 10.1016/j.ahj.2008.11.018 19249413.

22. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD, et al. Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. PLoS One. 2013;8(7):e68095. Epub 2013/07/23. doi: 10.1371/journal.pone.0068095 23874508.

23. Zineh I, Beitelshees AL, Gaedigk A, Walker JR, Pauly DF, Eberst K, et al. Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension. Clin Pharmacol Ther. 2004;76(6):536–44. Epub 2004/12/14. doi: 10.1016/j.clpt.2004.08.020 15592325.

24. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010;34(8):816–34. Epub 2010/11/09. doi: 10.1002/gepi.20533 21058334.

25. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. Annu Rev Genomics Hum Genet. 2009;10:387–406. Epub 2009/09/01. doi: 10.1146/annurev.genom.9.081307.164242 19715440.

26. Rau T, Wuttke H, Michels LM, Werner U, Bergmann K, Kreft M, et al. Impact of the CYP2D6 genotype on the clinical effects of metoprolol: a prospective longitudinal study. Clin Pharmacol Ther. 2009;85(3):269–72. Epub 2008/11/28. doi: 10.1038/clpt.2008.218 19037197.

27. Kasembeli AN, Duarte R, Ramsay M, Mosiane P, Dickens C, Dix-Peek T, et al. APOL1 Risk Variants Are Strongly Associated with HIV-Associated Nephropathy in Black South Africans. J Am Soc Nephrol. 2015;26(11):2882–90. Epub 2015/03/20. doi: 10.1681/ASN.2014050469 25788523.

28. Dummer PD, Limou S, Rosenberg AZ, Heymann J, Nelson G, Winkler CA, et al. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin Nephrol. 2015;35(3):222–36. Epub 2015/07/29. doi: 10.1016/j.semnephrol.2015.04.008 26215860.

29. Ma L, Shelness GS, Snipes JA, Murea M, Antinozzi PA, Cheng D, et al. Localization of APOL1 protein and mRNA in the human kidney: nondiseased tissue, primary cells, and immortalized cell lines. J Am Soc Nephrol. 2015;26(2):339–48. Epub 2014/07/12. doi: 10.1681/ASN.2013091017 25012173.

30. Chen TK, Appel LJ, Grams ME, Tin A, Choi MJ, Lipkowitz MS, et al. APOL1 Risk Variants and Cardiovascular Disease: Results From the AASK (African American Study of Kidney Disease and Hypertension). Arterioscler Thromb Vasc Biol. 2017;37(9):1765–9. Epub 2017/06/03. doi: 10.1161/ATVBAHA.117.309384 28572159.

31. Hughson MD, Hoy WE, Mott SA, Bertram JF, Winkler CA, Kopp JB. APOL1 Risk Variants Independently Associated With Early Cardiovascular Disease Death. Kidney Int Rep. 2018;3(1):89–98. Epub 2018/01/18. doi: 10.1016/j.ekir.2017.08.007 29340318.

32. Franceschini N, Kopp JB, Barac A, Martin LW, Li Y, Qian H, et al. Association of APOL1 With Heart Failure With Preserved Ejection Fraction in Postmenopausal African American Women. JAMA Cardiol. 2018;3(8):712–20. Epub 2018/07/05. doi: 10.1001/jamacardio.2018.1827 29971324.

33. Larsen CP, Beggs ML, Saeed M, Ambruzs JM, Cossey LN, Messias NC, et al. Histopathologic findings associated with APOL1 risk variants in chronic kidney disease. Mod Pathol. 2015;28(1):95–102. Epub 2014/08/02. doi: 10.1038/modpathol.2014.92 25081748.

34. Williams SF, Nicholas SB, Vaziri ND, Norris KC. African Americans, hypertension and the renin angiotensin system. World J Cardiol. 2014;6(9):878–89. Epub 2014/10/03. doi: 10.4330/wjc.v6.i9.878 25276290.

35. Weir MR, Gray JM, Paster R, Saunders E. Differing mechanisms of action of angiotensin-converting enzyme inhibition in black and white hypertensive patients. The Trandolapril Multicenter Study Group. Hypertension. 1995;26(1):124–30. Epub 1995/07/01. doi: 10.1161/01.hyp.26.1.124 7607715.

36. Fisher ND, Price DA, Litchfield WR, Williams GH, Hollenberg NK. Renal response to captopril reflects state of local renin system in healthy humans. Kidney Int. 1999;56(2):635–41. Epub 1999/08/05. doi: 10.1046/j.1523-1755.1999.00579.x 10432403.

37. Price DA, Porter LE, Gordon M, Fisher ND, De’Oliveira JM, Laffel LM, et al. The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol. 1999;10(11):2382–91. Epub 1999/11/30. 10541298.

38. Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH, Sanford SD, et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J Immunol. 2006;176(7):4419–30. Epub 2006/03/21. doi: 10.4049/jimmunol.176.7.4419 16547280.

39. Chittani M, Zaninello R, Lanzani C, Frau F, Ortu MF, Salvi E, et al. TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives. J Hypertens. 2015;33(6):1301–9. Epub 2015/02/20. doi: 10.1097/HJH.0000000000000541 25695618.

40. He J, Kelly TN, Zhao Q, Li H, Huang J, Wang L, et al. Genome-wide association study identifies 8 novel loci associated with blood pressure responses to interventions in Han Chinese. Circ Cardiovasc Genet. 2013;6(6):598–607. Epub 2013/10/30. doi: 10.1161/CIRCGENETICS.113.000307 24165912.

41. Honda M, Ogura Y, Toyoda W, Taguchi M, Nozawa T, Inoue H, et al. Multiple regression analysis of pharmacogenetic variability of carvedilol disposition in 54 healthy Japanese volunteers. Biol Pharm Bull. 2006;29(4):772–8. Epub 2006/04/06. doi: 10.1248/bpb.29.772 16595916.

42. Koriyama H, Nakagami H, Katsuya T, Sugimoto K, Yamashita H, Takami Y, et al. Identification of evidence suggestive of an association with peripheral arterial disease at the OSBPL10 locus by genome-wide investigation in the Japanese population. J Atheroscler Thromb. 2010;17(10):1054–62. Epub 2010/07/09. doi: 10.5551/jat.4291 20610895.

43. Jerng HH, Dougherty K, Covarrubias M, Pfaffinger PJ. A novel N-terminal motif of dipeptidyl peptidase-like proteins produces rapid inactivation of KV4.2 channels by a pore-blocking mechanism. Channels (Austin). 2009;3(6):448–61. Epub 2009/11/11. doi: 10.4161/chan.3.6.10216 19901547.

44. Strop P, Bankovich AJ, Hansen KC, Garcia KC, Brunger AT. Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J Mol Biol. 2004;343(4):1055–65. Epub 2004/10/13. doi: 10.1016/j.jmb.2004.09.003 15476821.

45. Li XG, Zhang JH, Xie MQ, Liu MS, Li BH, Zhao YH, et al. Association between DPP6 polymorphism and the risk of sporadic amyotrophic lateral sclerosis in Chinese patients. Chin Med J (Engl). 2009;122(24):2989–92. Epub 2010/02/09. 20137488.

46. Liao C, Fu F, Li R, Yang WQ, Liao HY, Yan JR, et al. Loss-of-function variation in the DPP6 gene is associated with autosomal dominant microcephaly and mental retardation. Eur J Med Genet. 2013;56(9):484–9. Epub 2013/07/09. doi: 10.1016/j.ejmg.2013.06.008 23832105.

47. Prontera P, Napolioni V, Ottaviani V, Rogaia D, Fusco C, Augello B, et al. DPP6 gene disruption in a family with Gilles de la Tourette syndrome. Neurogenetics. 2014;15(4):237–42. Epub 2014/08/19. doi: 10.1007/s10048-014-0418-9 25129042.

48. Ten Sande JN, Postema PG, Boekholdt SM, Tan HL, van der Heijden JF, de Groot NM, et al. Detailed characterization of familial idiopathic ventricular fibrillation linked to the DPP6 locus. Heart Rhythm. 2016;13(4):905–12. Epub 2015/12/19. doi: 10.1016/j.hrthm.2015.12.006 26681609.

49. Wright JT Jr., Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. Jama. 2002;288(19):2421–31. Epub 2002/11/21. doi: 10.1001/jama.288.19.2421 12435255.

50. Oliveira-Paula GH, Luizon MR, Lacchini R, Fontana V, Silva PS, Biagi C, et al. Gene-Gene Interactions Among PRKCA, NOS3 and BDKRB2 Polymorphisms Affect the Antihypertensive Effects of Enalapril. Basic Clin Pharmacol Toxicol. 2017;120(3):284–91. Epub 2016/10/04. doi: 10.1111/bcpt.12682 27696692.

51. Turner ST, Bailey KR, Schwartz GL, Chapman AB, Chai HS, Boerwinkle E. Genomic association analysis identifies multiple loci influencing antihypertensive response to an angiotensin II receptor blocker. Hypertension. 2012;59(6):1204–11. Epub 2012/05/09. doi: 10.1161/HYP.0b013e31825b30f8 22566498.

52. Schwartz GL, Bailey K, Chapman AB, Boerwinkle E, Turner ST. The role of plasma renin activity, age, and race in selecting effective initial drug therapy for hypertension. Am J Hypertens. 2013;26(8):957–64. Epub 2013/04/18. doi: 10.1093/ajh/hpt047 23591988.

53. Ku E, Lipkowitz MS, Appel LJ, Parsa A, Gassman J, Glidden DV, et al. Strict blood pressure control associates with decreased mortality risk by APOL1 genotype. Kidney Int. 2017;91(2):443–50. Epub 2016/12/09. doi: 10.1016/j.kint.2016.09.033 27927600.

54. Fu Y, Zhu JY, Richman A, Zhang Y, Xie X, Das JR, et al. APOL1-G1 in Nephrocytes Induces Hypertrophy and Accelerates Cell Death. J Am Soc Nephrol. 2016. Epub 2016/11/20. doi: 10.1681/ASN.2016050550 27864430.

55. Kruzel-Davila E, Shemer R, Ofir A, Bavli-Kertselli I, Darlyuk-Saadon I, Oren-Giladi P, et al. APOL1-Mediated Cell Injury Involves Disruption of Conserved Trafficking Processes. J Am Soc Nephrol. 2016. Epub 2016/11/20. doi: 10.1681/ASN.2016050546 27864431.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#