CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer’s disease

Autoři: Zehui Liu aff001;  Wanyan Wang aff001;  Tingyu Huang aff002;  Cunfang Wang aff002;  Ying Huang aff003;  Yong Tang aff004;  Jin Huang aff001
Působiště autorů: State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China aff001;  Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China aff002;  Guangdong Institute for Drug Control, Guangdong, China aff003;  Department of Urology, Wuming Hospital of Guangxi Medical University, Guangxi, China aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0222757


Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, and is the most common type of cognitive impairment and dementia. There is a pressing need to improve the clinical efficacy and quality of life for AD patients, as limited treatments options for AD patients have been developed until now. In this study, we aim to investigate the protective effect of CH(II), a cerebroprotein hydrolysate consisted of abundant biological peptides, on preclinical model of AD. We found that CH(II) treatment effectively protects oxygen glucose deprivation (OGD)-induced N2A cell viability impairment and cell apoptosis. In addition, CH(II) significantly reduces H2O2-induced ROS accumulation and exhibits the protective activities against H2O2-induced oxidative injury. Intriguingly, we found that CH(II) treatment can effectively promote neurite outgrowth of N2A cells. Moreover, CH(II) obviously improve the cognitive and memorial function in scopolamine-induced amnesia mice model. Taken together, this study provides evidences of the neuroprotective activities of CH(II) and offers a potential therapeutic strategy for AD patients.

Klíčová slova:

Alzheimer's disease – Apoptosis – Brain damage – Flow cytometry – Fluorescence imaging – Neurites – Neurogenesis – Neuronal death


1. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's & Dementia. 2012;8(1):1–13.

2. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer's disease. Nature Reviews Disease Primers. 2015;1:15056. doi: 10.1038/nrdp.2015.56 27188934

3. Patterson C, Lynch C, Bliss A, Lefevre M. World Alzheimer Report 2018. Alzheimer’s Disease International. 2018.

4. Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimer's research & therapy. 2014;6(4):37–. doi: 10.1186/alzrt269 25024750.

5. Hyde C, Peters J, Bond M, Rogers G, Hoyle M, Anderson R, et al. Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer's disease: systematic review and economic model†. Age and Ageing. 2013;42(1):14–20. doi: 10.1093/ageing/afs165 23179169

6. Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and Memantine for Moderate-to-Severe Alzheimer's Disease. New England Journal of Medicine. 2012;366(10):893–903. doi: 10.1056/NEJMoa1106668 22397651

7. Emmerzaal TL, Kiliaan AJ, Gustafson DR. 2003–2013: a decade of body mass index, Alzheimer's disease, and dementia. Journal of Alzheimers Disease Jad. 2015;43(3):739. doi: 10.3233/JAD-141086 25147111

8. Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR Jr., Jones RW, et al. Drug development in Alzheimer's disease: the path to 2025. Alzheimer's research & therapy. 2016;8:39–. doi: 10.1186/s13195-016-0207-9 27646601.

9. Aisen PS, Cummings J, Jack CR Jr., Morris JC, Sperling R, Frölich L, et al. On the path to 2025: understanding the Alzheimer's disease continuum. Alzheimer's research & therapy. 2017;9(1):60–. doi: 10.1186/s13195-017-0283-5 28793924.

10. Armstrong RA. Plaques and tangles and the pathogenesis of Alzheimer's disease. Folia Neuropathologica. 2006;44(1):1–11. 16565925

11. Portelius E, Zetterberg H, Andreasson U, Brinkmalm G, Andreasen N, Wallin A, et al. An Alzheimer's disease-specific beta-amyloid fragment signature in cerebrospinal fluid. Neuroscience Letters. 2006;409(3):215–9. doi: 10.1016/j.neulet.2006.09.044 17049739

12. Cummings JL. Alzheimer's disease. N Engl J Med. 2004;351(1):56–67. doi: 10.1056/NEJMra040223 15229308

13. Cai Z, Yan Y, Sun S, Zhang J, Huang L, Yan L, et al. Upregulation of BACE1 and beta-amyloid protein mediated by chronic cerebral hypoperfusion contributes to cognitive impairment and pathogenesis of Alzheimer's disease. Neurochemical Research. 2009;34(7):1226–35. doi: 10.1007/s11064-008-9899-y 19123057

14. E Bredesen D, Rao R, Mehlen P. Cell death in the nervous system2006. 796–802 p.

15. Zhu X, Lee HG, Perry G, Smith MA. Alzheimer disease, the two-hit hypothesis: An update. Biochim Biophys Acta. 2007;1772(4):494–502. doi: 10.1016/j.bbadis.2006.10.014 17142016

16. Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual Features in Alzheimer's Disease: From Basic Mechanisms to Clinical Overview. Neural plasticity. 2018;2018:2941783–. doi: 10.1155/2018/2941783 30405709.

17. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nature neuroscience. 2012;15(12):1700–6. Epub 11/11. doi: 10.1038/nn.3260 23143513.

18. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372. doi: 10.1038/35066584 11268214

19. Sahay A, Scobie KN, Hill AS, O'Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472(7344):466–70. Epub 04/03. doi: 10.1038/nature09817 21460835.

20. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476(7361):458–61. doi: 10.1038/nature10287 21814201.

21. Hartbauer M,., Hutter-Paier B,., Skofitsch G,., Windisch M,. Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons. Journal of Neural Transmission. 2001;108(4):459–73. doi: 10.1007/s007020170067 11475013

22. Li Z, Michael C, Meier DH, Stefan W, Lei W, Alexandra S, et al. Sonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke. STROKE -DALLAS-. 2013;44(7):1965.

23. Gutmann Birgit, HutterPaier Birgit, Skofitsch Gerhard, et al. In vitro models of brain ischemia: The peptidergic drug cerebrolysin protects cultured chick cortical neurons from cell death. Neurotoxicity Research. 2002;4(1):59–65. doi: 10.1080/10298420290007637 12826494

24. Vladimer D, Ursula H, Olle L, Zaal K. Stroke-induced neurogenesis in aged brain. Stroke; a journal of cerebral circulation. 2005;36(8):1790–5.

25. Masliah E, Díez-Tejedor E. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs of Today. 2012;48 Suppl A(Suppl A):3–24.

26. An L, Han X, Li H, Ma Y, Shi L, Xu G, et al. Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice. Genetics & Molecular Research Gmr. 2016;15(3).

27. Sharma HS, Zimmermann-Meinzingen S, Johanson CE. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Annals of the New York Academy of Sciences. 2010;1199(1):125–37.

28. Sharma HS, Muresanu DF, Sharma A. Alzheimer's disease: cerebrolysin and nanotechnology as a therapeutic strategy. Neurodegenerative Disease Management. 2016;6(6):453. doi: 10.2217/nmt-2016-0037 27827552

29. Rockenstein E, Desplats P, Ubhi K, Mante M, Florio J, Adame A, et al. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease ☆. Stem Cell Research. 2015;15(1):54–67. doi: 10.1016/j.scr.2015.04.008 26209890

30. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols. 2006;1:1112. doi: 10.1038/nprot.2006.179 17406391

31. Takano T, Wu M, Nakamuta S, Naoki H, Ishizawa N, Namba T, et al. Discovery of long-range inhibitory signaling to ensure single axon formation. Nature Communications. 2017;8(1):33. doi: 10.1038/s41467-017-00044-2 28652571

32. Xia Q, Li X, Zhou H, Zheng L, Shi J. S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1. Cell death & disease. 2018;9(6):657–. doi: 10.1038/s41419-018-0686-7 29844306.

33. Olson BJ, Markwell J. Assays for determination of protein concentration. Curr Protoc Protein Sci. 2007;chapter 3(Chapter 3):A.3A.1-A.3A.29.

34. Radogna F, Cerella C, Gaigneaux A, Christov C, Dicato M, Diederich M. Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma. Oncogene. 2015;35:3839. doi: 10.1038/onc.2015.455 26640148

35. Li X, Wang H, Lu Z, Zheng X, Ni W, Zhu J, et al. Development of Multifunctional Pyrimidinylthiourea Derivatives as Potential Anti-Alzheimer Agents. Journal of Medicinal Chemistry. 2016;59(18):8326. doi: 10.1021/acs.jmedchem.6b00636 27552582

36. Siqueira IR, Cimarosti H, Fochesatto C, Salbego C, Netto CA. Age-related susceptibility to oxygen and glucose deprivation damage in rat hippocampal slices. Brain Research. 2004;1025(1):226–30.

37. Taylor CP, Burke SP, Weber ML. Hippocampal slices: glutamate overflow and cellular damage from ischemia are reduced by sodium-channel blockade. Journal of Neuroscience Methods. 1995;59(1):121–8. doi: 10.1016/0165-0270(94)00202-r 7475242

38. Cárdenas A,., Moro MA, Hurtado O,., Leza JC, Lorenzo P,., Castrillo A,., et al. Implication of glutamate in the expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. Journal of Neurochemistry. 2010;74(5):2041–8.

39. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology. 2008;9:231. doi: 10.1038/nrm2312 18073771

40. Qing S, Wen-Li G, Rong Z. FAM3A Protects HT22 Cells Against Hydrogen Peroxide-Induced Oxidative Stress Through Activation of PI3K/Akt but not MEK/ERK Pathway. Cellular Physiology & Biochemistry International Journal of Experimental Cellular Physiology Biochemistry & Pharmacology. 2015;37(4):1431–41

41. Liu XR, Cao L, Li T, Chen LL, Yu YY, Huang WJ, et al. Propofol attenuates H 2 O 2 -induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes. Apoptosis. 2017;22(5):639–46. doi: 10.1007/s10495-017-1349-3 28176145

42. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, et al. Oxidative Stress in Neurodegenerative Diseases. Molecular neurobiology. 2016;53(6):4094–125. Epub 07/22. doi: 10.1007/s12035-015-9337-5 26198567.

43. Yoshimura T, Arimura N, Kaibuchi K. Signaling Networks in Neuronal Polarization. The Journal of Neuroscience. 2006;26(42):10626. doi: 10.1523/JNEUROSCI.3824-06.2006 17050700

44. 2018 Alzheimer's disease facts and figures. Alzheimer's & Dementia. 2018;14(3):367–429.

45. Safer DJ, Allen RP. The central effects of scopolamine in man. Biological Psychiatry. 1971;3(4):347. 4950489

46. Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neuroscience & Biobehavioral Reviews. 2010;34(8):1307–50.

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Zvyšte si kvalifikaci online z pohodlí domova

Ulcerative colitis_muž_břicho_střeva
Ulcerózní kolitida
nový kurz

Blokátory angiotenzinových receptorů (sartany)
Autoři: MUDr. Jiří Krupička, Ph.D.

Antiseptika a prevence ve stomatologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Citikolin v neuroprotekci a neuroregeneraci: od výzkumu do klinické praxe nejen očních lékařů
Autoři: MUDr. Petr Výborný, CSc., FEBO

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Všechny kurzy
Kurzy Doporučená témata