An in silico investigation of menthol metabolism

Autoři: Taweetham Limpanuparb aff001;  Wanutcha Lorpaiboon aff001;  Kridtin Chinsukserm aff001
Působiště autorů: Science Division, Mahidol University International College, Mahidol University, Nakhon Pathom, Thailand aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: 10.1371/journal.pone.0216577


Prevalence of mentholated products for consumption has brought great importance to studies on menthol’s metabolic pathways to ensure safety, design more potent derivatives, and identify therapeutic benefits. Proposed pathways of (-)-menthol metabolism based on metabolites found experimentally in previous works by Yamaguchi, Caldwell & Farmer, Madyastha & Srivatsan and Hiki et al. were not in agreement. This in silico approach is based on the three in vivo studies and aims to resolve the discrepancies. Reactions in the pathways are conjugation with glucuronic acid/sulfate, oxidation to alcohol, aldehyde & carboxylic acid, and formation of a four-membered/five-membered ring. Gas-phase structures, standard Gibbs energies and SMD solvation energies at B3LYP/6-311++G(d,p) level were obtained for 102 compounds in the pathways. This study provides a more complete picture of menthol metabolism by combining information from three experimental studies and filling missing links in previously published pathways.

Klíčová slova:

Alcohols – Bioenergetics – Drug metabolism – Metabolic pathways – Metabolites – Oxidation – Solutions – Aldehydes


1. Eccles R. Menthol and related cooling compounds. Journal of Pharmacy and Pharmacology. 1994;46(8):618–30. doi: 10.1111/j.2042-7158.1994.tb03871.x 7529306

2. Watson H, Hems R, Rowsell D, Spring D. New compounds with the menthol cooling effect. J Soc Cosmet Chem. 1978;29(185):200.

3. Swandulla D, Carbone E, Schäfer K, Lux H. Effect of menthol on two types of Ca currents in cultured sensory neurons of vertebrates. Pflügers Archiv. 1987;409(1–2):52–9. doi: 10.1007/bf00584749 2441355

4. Swandulla D, Schäfer K, Lux H. Calcium channel current inactivation is selectively modulated by menthol. Neuroscience letters. 1986;68(1):23–8. doi: 10.1016/0304-3940(86)90223-5 2425308

5. Thorup I, Würtzen G, Carstensen J, Olsen P. Short term toxicity study in rats dosed with pulegone and menthol. Toxicology letters. 1983;19(3):207–10. doi: 10.1016/0378-4274(83)90120-0 6658833

6. Statistica. Production volume of menthol in India from FY 2013 to FY 2017 (in thousand metric tons) 2019. Available from:

7. Patel T, Ishiuji Y, Yosipovitch G. Menthol: a refreshing look at this ancient compound. Journal of the American Academy of Dermatology. 2007;57(5):873–8. doi: 10.1016/j.jaad.2007.04.008 17498839

8. Karapinar M, Aktuǧ ŞE. Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. International Journal of Food Microbiology. 1987;4(2):161–6.

9. Galeotti N, Mannelli LDC, Mazzanti G, Bartolini A, Ghelardini C. Menthol: a natural analgesic compound. Neuroscience letters. 2002;322(3):145–8. doi: 10.1016/s0304-3940(01)02527-7 11897159

10. Brauchi S, Orio P, Latorre R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proceedings of the National Academy of Sciences. 2004;101(43):15494–9.

11. Sherkheli MA, Vogt-Eisele AK, Bura D, Márques LRB, Gisselmann G, Hatt H. Characterization of selective TRPM8 ligands and their structure activity response (SAR) relationship. Journal of Pharmacy & Pharmaceutical Sciences. 2010;13(2):242–53.

12. Giovino GA, Sidney S, Gfroerer JC, O'Malley PM, Allen JA, Richter PA, et al. Epidemiology of menthol cigarette use. Nicotine & Tobacco Research. 2004;6(Suppl_1):S67–S81.

13. Ahijevych K, Garrett BE. Menthol pharmacology and its potential impact on cigarette smoking behavior. Nicotine & Tobacco Research. 2004;6(Suppl_1):S17–S28.

14. Rakieten N, Rakieten ML, Boykin M. Effects of menthol vapor on the intact animal with special reference to the upper respiratory tract. Journal of the American Pharmaceutical Association. 1954;43(7):390–2. doi: 10.1002/jps.3030430703 13183832

15. Bernson VS, Pettersson B. The toxicity of menthol in short-term bioassays. Chemico-biological interactions. 1983;46(2):233–46. doi: 10.1016/0009-2797(83)90031-5 6627504

16. Joint FAO/WHO Expert Committee on Food Additives (World Health Organization & Food and Agriculture Organization of the United Nations), editor Evaluation of certain food additives: twentieth report of the Joint FAO/WHO Expert Committee on Food Additives; meeting held in Rome from 21 to 29 April 1976. Geneva2009.

17. Yamaguchi T, Caldwell J, Farmer PB. Metabolic fate of [3H]-l-menthol in the rat. Drug Metabolism and Disposition. 1994;22(4):616–24. 7956738

18. Madyastha KM, Srivatsan V. Studies on the metabolism of l-menthol in rats. Drug Metabolism and Disposition. 1988;16(5):765–72. 2906604

19. Hiki N, Kaminishi M, Hasunuma T, Nakamura M, Nomura S, Yahagi N, et al. A phase I study evaluating tolerability, pharmacokinetics, and preliminary efficacy of L‐menthol in upper gastrointestinal endoscopy. Clinical Pharmacology & Therapeutics. 2011;90(2):221–8.

20. Miyazawa M, Marumoto S, Takahashi T, Nakahashi H, Haigou R, Nakanishi K. Metabolism of (+)-and (-)-menthols by CYP2A6 in human liver microsomes. Journal of oleo science. 2011;60(3):127–32. 21343660

21. Gelal A, Jacob P, Yu L, Benowitz NL. Disposition kinetics and effects of menthol. Clinical Pharmacology & Therapeutics. 1999;66(2):128–35.

22. Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. The Journal of Physical Chemistry B. 2009;113(18):6378–96. doi: 10.1021/jp810292n 19366259

23. Limpanuparb T, Roongruangsree P, Areekul C. A DFT investigation of the blue bottle experiment: E∘ half-cell analysis of autoxidation catalysed by redox indicators. Royal Society Open Science. 2017;4(11):170708. doi: 10.1098/rsos.170708 29291061

24. Limpanuparb T, Noorat R, Tantirungrotechai Y. In Silico Investigation of Mitragynine and 7-Hydroxymitragynine Metabolism. BMC Research Notes. 2019;12:451. doi: 10.1186/s13104-019-4461-3 31331383

25. Ho J, Ertem MZ. Calculating free energy changes in continuum solvation models. The Journal of Physical Chemistry B. 2016;120(7):1319–29. doi: 10.1021/acs.jpcb.6b00164 26878566

26. Ho J, Coote ML. A universal approach for continuum solvent pKa calculations: are we there yet? Theoretical Chemistry Accounts. 2010;125(1–2):3.

27. Camaioni DM, Schwerdtfeger CA. Comment on “Accurate experimental values for the free energies of hydration of H+, OH-, and H3O+”. The Journal of Physical Chemistry A. 2005;109(47):10795–7. doi: 10.1021/jp054088k 16863129

28. Bryantsev VS, Diallo MS, Goddard Iii WA. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. The Journal of Physical Chemistry B. 2008;112(32):9709–19. doi: 10.1021/jp802665d 18646800

29. Shao Y, Gan Z, Epifanovsky E, Gilbert AT, Wormit M, Kussmann J, et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics. 2015;113(2):184–215.

30. Wolfram Research Inc. Mathematica. 2019.

31. Härtner J, Reinscheid UM. Conformational analysis of menthol diastereomers by NMR and DFT computation. Journal of Molecular Structure. 2008;872(2–3):145–9.

32. Wiberg KB. Basis set effects on calculated geometries: 6–311++G** vs. aug-cc-pVDZ. Journal of Computational Chemistry. 2004;25(11):1342–6. doi: 10.1002/jcc.20058 15185327

Článek vyšel v časopise


2019 Číslo 9

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…

Kurzy Doporučená témata