Identifikace a charakterizace prometastatických cílů, drah a molekulárních komplexů s využitím proteomických technologií


Autoři: Faktor J.dvorakova M.maryas J.struharova I. * 1,* 1,2,* 1,* 1,2;  P. Bouchal 1,2
Působiště autorů: Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic 1;  Regional Centre for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic 2
Vyšlo v časopise: Klin Onkol 2012; 25(Supplementum 2): 70-77

Práce byla podpořena grantem GA ČR P304/10/0868, projektem Velkých infrastruktur MŠMT (BBMRI_CZ LM2010004) a Evropským fondem pro regionální rozvoj a státním rozpočtem České republiky (OP VaVpI – RECAMO, CZ.1.05/2.1.00/03.0101).

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů.

Obdrženo: 5. 10. 2012
Přijato: 5. 11. 2012

Souhrn

Východiska:
Tvorba metastáz je spojena se změnami v signálních drahách, buněčné adhezi, migraci a invazivitě. Moderní proteomické přístupy na bázi hmotnostní spektrometrie umožňují vyhledávat prometastatické proteiny a jejich funkční partnery, uplatňují se při jejich funkční charakterizaci a validaci směrem k vývoji nových diagnostických a terapeutických přístupů.

Cíl:
Cílem článku je detailněji popsat a shrnout současné možnosti proteomických technik v identifikaci a charakterizaci proteinů zapojených do prometastatických procesů. Za regulaci řady prometastatických dějů je odpovědná například NF-κB dráha. Související proteiny lze vyhledávat pomocí necílených proteomických přístupů porovnávajících proteomy s různým metastatickým potenciálem. Paralelní analýzu většího množství nádorových vzorků přitom zjednodušují metody značení se stabilními izotopy. Identifikované prometastatické proteiny lze charakterizovat ve vztahu k buněčné migraci, invazivitě a proliferaci a v jejich zapojení do molekulárních komplexů pomocí protein-proteinových interakcí. Při tom lze využít technik metabolického značení, podobně jako při charakterizaci souvisejících povrchových proteinů buněk zapojených do buněčné adheze, invazivity a mezibuněčné komunikace. Při validaci prometastatických proteinů v rozsáhlých souborech klinických vzorků se uplatňují metodiky cílené proteomiky založené na monitorování vybraných reakcí.

Závěr:
Současné proteomické metody mají klíčový význam při identifikaci prometastatických proteinů, drah a molekulárních komplexů, při jejich funkční charakterizaci a validaci směrem k diagnostickému a terapeutickému využití.

Klíčová slova:
metastázy – proteomika – tumorové markery – buněčná migrace – membránové proteiny – přenos signálů – hmotnostní spektrometrie – izotopové značení


Zdroje

1. Prasad S, Ravindran J, Aggarwal BB. NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 2010; 336(1–2): 25–37.

2. Brown M, Cohen J, Arun P et al. NF-kappaB in carcinoma therapy and prevention. Expert Opin Ther Targets 2008; 12(9): 1109–1122.

3. Chaturvedi MM, Sung B, Yadav VR et al. NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 2011; 30(14): 1615–1630.

4. Xiao G, Fu J. NF-κB and cancer: a paradigm of Yin-Yang. Am J Cancer Res 2011; 1(2): 192–221.

5. Schneider G, Krämer OH. NFκB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta 2011; 1815(1): 90–103.

6. Jing Y, Han Z, Zhang S et al. Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 2011; 1: 1–6.

7. Tobar F, Villar V, Santibanez JZ. ROS-NFκB mediates TGF-β1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 2010; 340(1–2): 195–202.

8. Mankan AK, Lawless MW, Gray SG et al. NF-kappaB regulation: the nuclear response. J Cell Mol Med 2009; 13(4): 631–643.

9. Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 2004; 3(12): 1154–1169.

10. Bouchal P, Roumeliotis T, Hrstka R et al. Biomarker discovery in low-grade breast cancer using isobaric stable isotope tags and two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2DLC-MS/MS) based quantitative proteomic analysis. J Proteome Res 2009; 8(1): 362–373.

11. Ho J, Kong JWF, Choong LY et al. Novel breast cancer metastasis-associated proteins. J Proteome Res 2009; 8(2): 583–594.

12. Ghosh D, Yu H, Tan XF et al. Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J Proteome Res 2011; 10(10): 4373–4387.

13. Rehman I, Evans CA, Glen A et al. iTRAQ Identification of Candidate Serum Biomarkers Associated with Metastatic Progression of Human Prostate Cancer. PLoS One 2012; 7(2): 1–7.

14. Yang Y, Yixuan Y, Lim SK et al. Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. J Proteome Res 2010; 9(9): 4767–4778.

15. Pierce A, Unwin RD, Evans CA et al. Eight-channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine kinases. Mol Cell Proteomics 2008; 7(5): 853–863.

16. Glen A, Evans CA, Gan CS et al. Eight-plex iTRAQ analysis of variant metastatic human prostate cancer cells identifies candidate biomarkers of progression: An exploratory study. Prostate 2010; 70(12): 1313–1332.

17. Ong SE, B. Blagoev B, I. Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002; 1(5): 376–386.

18. Olsen JV, Blagoev B, Gnad F et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006; 127(3): 635–648.

19. Geiger T, Cox J, Ostasiewicz P et al. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 2010; 7(5): 383–385.

20. Krüger M, Moser M, Ussar S et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 2008; 134(2): 353–364.

21. Sirvent A, Vigy O, Orsetti B et al. Analysis of SRC oncogenic signaling in colorectal cancer by Stable Isotope Labeling with heavy Amino acids in mouse Xenografts. Mol Cell Proteomics. [Epub ahead of print].

22. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3(5): 362–374.

23. Iiizumi M, Liu W, Pai SK et al. Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta 2008; 1786(2): 87–104.

24. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188(1): 11–19.

25. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer 2003; 3(12): 921–930.

26. Poujade M, Grasland-Mongrain E, Hertzog A et al. Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U.S.A. 2007; 104(41): 15988–15993.

27. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 1962; 115: 453–466.

28. Wolf K, Friedl P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 2011; 21(12): 736–744.

29. Blagoev B, Kratchmarova I, Ong S-E et al. A proteomics strategy to elucidate functional protein-protein interac­tions applied to EGF signaling. Nat Biotechnol 2003; 21(3): 315–318.

30. Leth-Larsen R, Lund RR, Hansen HV et al. Metastasis-related Plasma Membrane Proteins of Human Breast Cancer Cells Identified by Comparative Quantitative Mass Spectrometry. Mol Cell Proteomics 2009; 8(6): 1436–1449.

31. Leth-Larsen R, Lund RR, Ditzel JH. Plasma Membrane Proteomics and Its Application in Clinical Cancer Biomarker Discovery. Mol Cell Proteomics 2010; 9(7): 1369–1382.

32. Lund RR, Leth-Larsen R, Jensen ON et al. Efcient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identication of Metastasis-Associated Cell Surface Markers. J Proteome Res 2009; 8(6): 3078–3090.

33. Scheurer SB, Rybak JN, Roesli C et al. Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 2005; 5(11): 2718–2727.

34. Scheurer SB, Roesli C, Neri D et al. Comparison of Different Biotinylation Reagents, Tryptic Digestion Procedures, and Mass Spectrometric Techniques for 2-D Peptide Mapping of Membrane Proteins. Cancer Res 2009; 5(12): 5406–5414.

35. Hoang VM, Conrads TP, Veenstra TD et al. Quantitative Proteomics Employing Primary Amine Affinity Tags. J Biomol Tech 2003; 14(3): 216–223.

36. Rybak JN, Scheurer SB, Neri D et al. Purification of Bio­tinylated Proteins on Streptavidin Resin: A Protocol for Quantitative Elution. Proteomics 2004; 4(8): 2296–2299.

37. Qiu H, Wang Y. Quantitative Analysis of Surface Plasma Membrane Proteins of Primary and Metastatic Melanoma Cells. J Proteome Res 2008; 7(5): 1904–1915.

38. Roesli C, Borgia B, Schliemann C et al. Comparative Analysis of the Membrane Proteome of Closely Related Metastatic and Nonmetastatic Tumor Cells. Cancer Res 2009; 69(13): 5406–5414.

39. Hüttenhain R, Malmström J, Picotti P et al. Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 2009; 13(5–6): 518–525.

40. Lange V, Picotti P, Domon B et al. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008; 4: 1–12.

41. Peterson AC, Russell JD, Bailey DJ et al. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. [Epub ahead of print].

42. http://www.absciex.com/Documents/Downloads//Literature/mass-spectrometry-TargetedProteinQuant.pdf [online]. AB Sciex, USA; c2012 updated 11 September 2012; cited 11 September 2012. Available from: http://www.absciex.com.

43. Faktor J, Struhárová I, Fučíková A et al. Kvantifikace proteinových biomarkerů pomocí hmotnostní spektrometrie pracující v režimu monitorování vybraných reakcí. Chemické Listy 2011; 105(11): 846–850.

44. Zhao L, Whiteaker JR, Pope ME. Quantification of Proteins Using Peptide Immunoaffinity Enrichment Coupled with Mass Spectrometry. J Vis Exp 2011; 31(53): 2812.

45. Kitteringham NR, Jenkins RE, Lane CS et al. Multiple Reaction Monitoring for Quantitative Biomarker Analysis in Proteomics and Metabolomics. J Chromatography B 2009; 877(13):1234–1235.

46. Keshishian H, Addona T, Burgess M et al. Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution. Mol Cell Proteomics 2007; 6(12): 2212–2229.

47. Fortin T, Salvador A, Charrier JP et al. Clinical Quantitation of Prostate-Specific Antigen Biomarker in the Low Nanogram/mililiter Range by Conventional Bore Liquid Chromatography-tandem Mass Spectrometry (Multiple Reaction Monitoring) Coupling and Corellation with ELISA Tests. Mol Cell Proteomics 2009; 8(5): 1006–1015.

48. Jenkins RE, Kitteringham NR, Hunter CL. Relative and absolute quantitative expression profiling of cytochromes P450 using isotope-coded afinity tags. Proteomics 2006; 6(6): 1934–1947.

49. Nishimura T, Nomura M, Tojo H et al. Proteomic Analysis of Laser-microdissected Paraffin-embedded tissues: (2) MRM Assay for Stage-related proteins upon Non-metastatic Lung Adenocarcinoma. J Proteomics 2010; 73(6): 1100–1110.

50. Gillet LC, Navarro P, Tate S et al. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol Cell Proteomics 2012; 11(6): O111.016717.

51. Crotti S, Seraglia R, Traldi P. Some Thoughts on Electrospray Ionization Mechanisms. Eur J Mass Spectrom 2011; 17(2): 85–99.

52. Hager JW, Blanc JCY. Product ion scanning using a Q-q-Qlinear ion trap (Q TRAPTM) mass spectrometer. Rapid Commun Mass Spectrom 2003; 17(10): 1056–1064.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo Supplementum 2

2012 Číslo Supplementum 2

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
nový kurz
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Inhibitory karboanhydrázy v léčbě glaukomu
Autoři: as. MUDr. Petr Výborný, CSc., FEBO

Příběh jedlé sody
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se