Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes


Autoři: Jan Henkel aff001;  Rashid Saif aff001;  Vidhya Jagannathan aff001;  Corinne Schmocker aff001;  Flurina Zeindler aff004;  Erika Bangerter aff005;  Ursula Herren aff005;  Dimitris Posantzis aff006;  Zafer Bulut aff007;  Philippe Ammann aff008;  Cord Drögemüller aff001;  Christine Flury aff004;  Tosso Leeb aff001
Působiště autorů: Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland aff001;  DermFocus, University of Bern, Bern, Switzerland aff002;  Institute of Biotechnology, Gulab Devi Educational Complex, Lahore, Pakistan aff003;  School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland aff004;  Swiss Goat Breeding Association, Zollikofen, Switzerland aff005;  Attica Zoological Park, Spata, Greece aff006;  Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey aff007;  ProSpecieRara, Basel, Switzerland aff008
Vyšlo v časopise: Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008536
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008536

Souhrn

Domestication and human selection have formed diverse goat breeds with characteristic phenotypes. This process correlated with the fixation of causative genetic variants controlling breed-specific traits within regions of reduced genetic diversity, so called selection signatures or selective sweeps. Using whole genome sequencing of DNA pools (pool-seq) from 20 genetically diverse modern goat breeds and bezoars, we identified 2,239 putative selection signatures. In two Pakistani goat breeds, Pak Angora and Barbari, we found selection signatures in a region harboring KIT, a gene involved in melanoblast development, migration, and survival. The search for candidate causative variants responsible for these selective sweeps revealed two different copy number variants (CNVs) downstream of KIT that were exclusively present in white Pak Angora and white-spotted Barbari goats. Several Swiss goat breeds selected for specific coat colors showed selection signatures at the ASIP locus encoding the agouti signaling protein. Analysis of these selective sweeps revealed four different CNVs associated with the white or tan (AWt), Swiss markings (Asm), badgerface (Ab), and the newly proposed peacock (Apc) allele. RNA-seq analyses on skin samples from goats with the different CNV alleles suggest that the identified structural variants lead to an altered expression of ASIP between eumelanistic and pheomelanistic body areas. Our study yields novel insights into the genetic control of pigmentation by identifying six functionally relevant CNVs. It illustrates how structural changes of the genome have contributed to phenotypic evolution in domestic goats.

Klíčová slova:

Animal sexual behavior – Antigen-presenting cells – Domestic animals – Gene pool – Genetic loci – Genome analysis – Goats – Species diversity


Zdroje

1. Zeder MA, Hesse B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science. 2000;287: 2254–2257. doi: 10.1126/science.287.5461.2254 10731145

2. Naderi S, Rezaei H-R, Pompanon F, Blum MG, Negrini R, Naghash H-R, et al. The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proc Natl Acad Sci USA. 2008;105: 17659–17664. doi: 10.1073/pnas.0804782105 19004765

3. Colli L, Milanesi M, Talenti A, Bertolini F, Chen M, Crisa A, et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet Sel Evol. 2018;50: 58. doi: 10.1186/s12711-018-0422-x 30449284

4. FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture, edited by B.D. Scherf & D. Pilling. FAO Commission on Genetic Resources for Food and Agriculture Assessments. Rome 2015. (http://www.fao.org/3/a-i4787e/index.html)

5. Stella A, Nicolazzi EL, Van Tassell CP, Rothschild MF, Colli L, Rosen BD, et al. AdaptMap: exploring goat diversity and adaptation. Genet Sel Evol. 2018;50: 61. doi: 10.1186/s12711-018-0427-5 30453882

6. Alberto FJ, Boyer F, Orozco-terWengel P, Streeter I, Servin B, de Villemereuil P, et al. Convergent genomic signatures of domestication in sheep and goats. Nat Comm. 2018;9: 813.

7. Burren A, Neuditschko M, Signer-Hasler H, Frischknecht M, Reber I, Menzi F, et al. Genetic diversity analyses reveal first insights into breed-specific selection signatures within Swiss goat breeds. Anim Genet. 2016;47: 727–739. doi: 10.1111/age.12476 27436146

8. Adalsteinsson S, Sponenberg DP, Alexieva S, Russel AJ. Inheritance of goat coat colors. J Hered. 1994;85: 267–272. doi: 10.1093/oxfordjournals.jhered.a111454 7930499

9. Fontanesi L, Beretti F, Riggio V, Gomez Gonzalez E, Dall’Olio S, Davoli R, et al. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors. Cytogenet Genome Res. 2009;126:333–347. doi: 10.1159/000268089 20016133

10. Becker D, Otto M, Ammann P, Keller I, Drögemüller C, Leeb T. The brown coat colour of Coppernecked goats is associated with a non-synonymous variant at the TYRP1 locus on chromosome 8. Anim Genet. 2015;46:50–54. doi: 10.1111/age.12240 25392961

11. Dietrich J, Menzi F, Ammann P, Drögemüller C, Leeb T. A breeding experiment confirms the dominant mode of inheritance of the brown coat colour associated with the 496Asp TYRP1 allele in goats. Anim Genet. 2015;46: 587–588. doi: 10.1111/age.12320 26153465

12. Menzi F, Keller I, Reber I, Beck J, Brenig B, Schutz E, et al. Genomic amplification of the caprine EDNRA locus might lead to a dose dependent loss of pigmentation. Sci Rep. 2016;6: 28438. doi: 10.1038/srep28438 27329507

13. Jackson IJ. Homologous pigmentation mutations in human, mouse and other model organisms. Hum Mol Genet. 1997;6: 1613–1624. doi: 10.1093/hmg/6.10.1613 9300652

14. Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res. 2008;21: 598–610. doi: 10.1111/j.1755-148X.2008.00506.x 19067969

15. Haase B, Brooks SA, Schlumbaum A, Azor PJ, Bailey E, Alaeddine F, et al. Allelic heterogeneity at the equine KIT locus in dominant white (W) horses. PLoS Genet. 2007;3: e195. doi: 10.1371/journal.pgen.0030195 17997609

16. Greenhill ER, Rocco A, Vibert L, Nikaido M, Kelsh RN. An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genet. 2011;7: e1002265. doi: 10.1371/journal.pgen.1002265 21909283

17. Hauswirth R, Haase B, Blatter M, Brooks SA, Burger D, Drögemüller C, et al. Mutations in MITF and PAX3 cause "splashed white" and other white spotting phenotypes in horses. PLoS Genet. 2012;8: e1002653. doi: 10.1371/journal.pgen.1002653 22511888

18. Norris BJ, Whan VA. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome research. 2008;18(8):1282–93. doi: 10.1101/gr.072090.107 18493018

19. Barsh GS. The genetics of pigmentation: from fancy genes to complex traits. Trends Genet. 1996;12: 299–305. doi: 10.1016/0168-9525(96)10031-7 8783939

20. Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T, et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994; 371: 799–802. doi: 10.1038/371799a0 7935841

21. Millar SE, Miller MW, Stevens ME, Barsh GS. Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated. Development. 1995;121: 3223–3232. 7588057

22. Le Pape E, Wakamatsu K, Ito S, Wolber R, Hearing VJ. Regulation of eumelanin/pheomelanin synthesis and visible pigmentation in melanocytes by ligands of the melanocortin 1 receptor. Pigment Cell Melanoma Res. 2008;21: 477–486. doi: 10.1111/j.1755-148X.2008.00479.x 18627531

23. Cieslak M, Reissmann M, Hofreiter M, Ludwig A. Colours of domestication. Biol Rev. 2011;86: 885–899. doi: 10.1111/j.1469-185X.2011.00177.x 21443614

24. Graham A, Wakamatsu K, Hunt G, Ito S, Thody AJ. Agouti protein inhibits the production of eumelanin and pheomelanin in the presence and absence of alpha-melanocyte stimulating hormone. Pigment Cell Res. 1997;10: 298–303. doi: 10.1111/j.1600-0749.1997.tb00689.x 9359625

25. Bultman SJ, Michaud EJ, Woychik RP. Molecular characterization of the mouse agouti locus. Cell. 1992;71: 1195–1204. doi: 10.1016/s0092-8674(05)80067-4 1473152

26. Vrieling H, Duhl DM, Millar SE, Miller KA, Barsh GS. Differences in dorsal and ventral pigmentation result from regional expression of the mouse agouti gene. Proc Natl Acad Sci USA. 1994;91: 5667–5671. doi: 10.1073/pnas.91.12.5667 8202545

27. Drögemüller C, Giese A, Martins-Wess F, Wiedemann S, Andersson L, Brenig B, et al. The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mamm Genome. 2006;17: 58–66. doi: 10.1007/s00335-005-0104-1 16416091

28. Kaelin CB, Barsh GS. Genetics of pigmentation in dogs and cats. Ann Rev Anim Biosci. 2013;1: 125–156.

29. Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974;23: 23–35. 4407212

30. Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169: 2335–2352. doi: 10.1534/genetics.104.036947 15716498

31. Pennings PS, Hermisson J. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol Biol Evol 2006;23: 1076–1084. doi: 10.1093/molbev/msj117 16520336

32. Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010;464: 587–591. doi: 10.1038/nature08832 20220755

33. Rubin CJ, Megens HJ, Martinez Barrio A, Maqbool K, Sayyab S, Schwochow D, et al. Strong signatures of selection in the domestic pig genome. Proc Natl Acad Sci USA. 2012;109: 19529–19536. doi: 10.1073/pnas.1217149109 23151514

34. Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alfoldi J, Martinez Barrio A, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014;345: 1074–1079. doi: 10.1126/science.1253714 25170157

35. Martinez Barrio A, Lamichhaney S, Fan G, Rafati N, Pettersson M, Zhang H, et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. eLife. 2016;5: e12081. doi: 10.7554/eLife.12081 27138043

36. Wang X, Liu J, Zhou G, Guo J, Yan H, Niu Y, et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci Rep. 2016;6: 38932. doi: 10.1038/srep38932 27941843

37. Nazari-Ghadikolaei A, Mehrabani-Yeganeh H, Miarei-Aashtiani SR, Staiger EA, Rashidi A, Huson HJ. Genome-wide association studies identify candidate genes for coat color and mohair traits in the Iranian Markhoz goat. Front Genet. 2018;9: 105. doi: 10.3389/fgene.2018.00105 29670642

38. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988;335: 88–89. doi: 10.1038/335088a0 2457811

39. Roskoski R Jr. Signaling by Kit protein-tyrosine kinase–the stem cell factor receptor. Biochem Biophys Res Commun. 2005;337: 1–13. doi: 10.1016/j.bbrc.2005.08.055 16129412

40. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U, et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest. 1993;92: 1736–1744. doi: 10.1172/JCI116761 7691885

41. Nagata H, Worobec AS, Semere T, Metcalfe DD. Elevated expression of the proto-oncogene c-kit in patients with mastocytosis. Leukemia. 1998;12: 175–181. doi: 10.1038/sj.leu.2400906 9519779

42. Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell. 1988;55: 185–192. doi: 10.1016/0092-8674(88)90020-7 2458842

43. Giebel LB, Spritz RA. Mutation of the KIT (mast/stem cell growth factor receptor) protooncogene in human piebaldism. Proc Nat Acad Sci USA. 1991;88: 8696–8699. doi: 10.1073/pnas.88.19.8696 1717985

44. Fleischman RA, Saltman DL, Stastny V, Zneimer S. Deletion of the c-kit protooncogene in the human developmental defect piebald trait. Proc Natl Acad Sci USA. 1991;88: 10885–10889. doi: 10.1073/pnas.88.23.10885 1720553

45. Haase B, Brooks SA, Tozaki T, Burger D, Poncet PA, Rieder S, et al. Seven novel KIT mutations in horses with white coat colour phenotypes. Anim Genet. 2009;40: 623–629. doi: 10.1111/j.1365-2052.2009.01893.x 19456317

46. Marklund S, Kijas J, Rodriguez-Martinez H, Rönnstrand L, Funa K, Moller M, et al. Molecular basis for the dominant white phenotype in the domestic pig. Genome Res. 1998;8: 826–833. doi: 10.1101/gr.8.8.826 9724328

47. Giuffra E, Evans G, Törnsten A, Wales R, Day A, Looft H, Plastow G, Andersson L. The Belt mutation in pigs is an allele at the Dominant white (I/KIT) locus. Mamm Genome. 1999;10: 1132–1136. doi: 10.1007/s003359901178 10594235

48. Durkin K, Coppieters W, Drögemüller C, Ahariz N, Cambisano N, Druet T, et al. Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature. 2012;482: 81–84. doi: 10.1038/nature10757 22297974

49. Küttel L, Letko A, Häfliger IM, Signer-Hasler H, Joller S, Hirsbrunner G, et al. A complex structural variant at the KIT locus in cattle with the Pinzgauer spotting pattern. Anim Genet. 2019; doi: 10.1111/age.12821 31294880

50. Brooks SA, Lear TL, Adelson DL, Bailey E. A chromosome inversion near the KIT gene and the Tobiano spotting pattern in horses. Cytogenetic and genome research. 2007;119: 225–230. doi: 10.1159/000112065 18253033

51. Kerns JA, Newton J, Berryere TG, Rubin EM, Cheng JF, Schmutz SM, et al. Characterization of the dog Agouti gene and a nonagoutimutation in German Shepherd Dogs. Mamm Genome. 2004;15: 798–808. doi: 10.1007/s00335-004-2377-1 15520882

52. Rieder S, Taourit S, Mariat D, Langlois B, Guerin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm Genome. 2001;12: 450–455. doi: 10.1007/s003350020017 11353392

53. Fontanesi L, Forestier L, Allain D, Scotti E, Beretti F, Deretz-Picoulet S, et al. Characterization of the rabbit agouti signaling protein (ASIP) gene: transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour. Genomics. 2010;95: 166–175. doi: 10.1016/j.ygeno.2009.11.003 20004240

54. Berryere TG, Kerns JA, Barsh GS, Schmutz SM. Association of an Agouti allele with fawn or sable coat color in domestic dogs. Mamm Genome. 2005;16: 262–272. doi: 10.1007/s00335-004-2445-6 15965787

55. Giuffra E, Tuggle CK; FAANG Consortium. Functional Annotation of Animal Genomes (FAANG): Current Achievements and Roadmap. Annu Rev Anim Biosci. 2019;7: 65–88. doi: 10.1146/annurev-animal-020518-114913 30427726

56. Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nature Genet. 2017;49: 643–650. doi: 10.1038/ng.3802 28263316

57. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

58. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

59. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. doi: 10.1101/gr.107524.110 20644199

60. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27: 2987–2993. doi: 10.1093/bioinformatics/btr509 21903627

61. Kofler R, Pandey RV, Schlötterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27: 3435–3456. doi: 10.1093/bioinformatics/btr589 22025480

62. Hartl DL, Clark AG. Principles of population genetics: Sinauer associates Sunderland, MA; 1997.

63. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34: i884–i90. doi: 10.1093/bioinformatics/bty560 30423086

64. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6: 80–92. doi: 10.4161/fly.19695 22728672

65. Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. 2014:005165.

66. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2018. https://www.R-project.org/.

67. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinf. 2013;14: 178–192.

68. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29: 15–21. doi: 10.1093/bioinformatics/bts635 23104886

69. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31: 166–169. doi: 10.1093/bioinformatics/btu638 25260700

70. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26: 139–140. doi: 10.1093/bioinformatics/btp616 19910308

71. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11: R25. doi: 10.1186/gb-2010-11-3-r25 20196867

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2019 Číslo 12

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×