-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaLeveraging allelic imbalance to refine fine-mapping for eQTL studies
Autoři: Jennifer Zou aff001; Farhad Hormozdiari aff002; Brandon Jew aff004; Stephane E. Castel aff005; Tuuli Lappalainen aff005; Jason Ernst aff001; Jae Hoon Sul aff008; Eleazar Eskin aff001
Působiště autorů: Computer Science Department, University of California Los Angeles, Los Angeles, California, United States of America aff001; Genetic Epidemiology and Statistical Genetics Program, Harvard University, Cambridge, Massachusetts, United States of America aff002; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America aff003; Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, United States of America aff004; New York Genome Center, New York, New York, United States of America aff005; Department of Systems Biology, Columbia University, New York, New York, United States of America aff006; Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America aff007; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, United States of America aff008; Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America aff009
Vyšlo v časopise: Leveraging allelic imbalance to refine fine-mapping for eQTL studies. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008481
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008481Souhrn
Many disease risk loci identified in genome-wide association studies are present in non-coding regions of the genome. Previous studies have found enrichment of expression quantitative trait loci (eQTLs) in disease risk loci, indicating that identifying causal variants for gene expression is important for elucidating the genetic basis of not only gene expression but also complex traits. However, detecting causal variants is challenging due to complex genetic correlation among variants known as linkage disequilibrium (LD) and the presence of multiple causal variants within a locus. Although several fine-mapping approaches have been developed to overcome these challenges, they may produce large sets of putative causal variants when true causal variants are in high LD with many non-causal variants. In eQTL studies, there is an additional source of information that can be used to improve fine-mapping called allelic imbalance (AIM) that measures imbalance in gene expression on two chromosomes of a diploid organism. In this work, we develop a novel statistical method that leverages both AIM and total expression data to detect causal variants that regulate gene expression. We illustrate through simulations and application to 10 tissues of the Genotype-Tissue Expression (GTEx) dataset that our method identifies the true causal variants with higher specificity than an approach that uses only eQTL information. Across all tissues and genes, our method achieves a median reduction rate of 11% in the number of putative causal variants. We use chromatin state data from the Roadmap Epigenomics Consortium to show that the putative causal variants identified by our method are enriched for active regions of the genome, providing orthogonal support that our method identifies causal variants with increased specificity.
Klíčová slova:
Gene expression – Gene mapping – Genetic loci – Genome-wide association studies – Chromatin – Statistical distributions – Variant genotypes
Zdroje
1. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature. 2008;452(March).
2. Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genetics. 2010;6(4):e1000895. doi: 10.1371/journal.pgen.1000895 20369022
3. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genetics. 2010;6(4):e1000888. doi: 10.1371/journal.pgen.1000888 20369019
4. Davis LK, Yu D, Keenan CL, Gamazon ER, Konkashbaev AI, Derks EM, et al. Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture. PLoS Genetics. 2013;9(10):e1003864. doi: 10.1371/journal.pgen.1003864 24204291
5. Torres JM, Gamazon ER, Parra EJ, Below JE, Valladares-Salgado A, Wacher N, et al. Cross-Tissue and Tissue-Specific eQTLs: Partitioning the Heritability of a Complex Trait. The American Journal of Human Genetics. 2014;95(5):521–534. doi: 10.1016/j.ajhg.2014.10.001 25439722
6. Brem RB, Clinton R. Genetic Dissection of Transcriptional Regulation in Budding Yeast. Science. 2002;296(April). doi: 10.1126/science.1069516 11923494
7. Consortium TG. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45(6):580–585. doi: 10.1038/ng.2653
8. Consortium TG. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348(6235):648–660. doi: 10.1126/science.1262110
9. Zhernakova DV, Deelen P, Vermaat M, van Iterson M, van Galen M, Arindrarto W, et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nature Genetics. 2016;49(1):139–145. doi: 10.1038/ng.3737 27918533
10. Consortium TG. Genetic effects on gene expression across human tissues. Nature. 2017;550 : 204–213. doi: 10.1038/nature24277
11. Wellcome Trust Case Control Consortium T. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genetics. 2012;44(12).
12. Malo N, Libiger O, Schork NJ. Accommodating Linkage Disequilibrium in Genetic-Association Analyses via Ridge Regression. Am J Hum Genet. 2008;82(February):375–385. doi: 10.1016/j.ajhg.2007.10.012 18252218
13. Yang J, Ferreira T, Morris AP, Medland SE, Investigation G, Madden PAF, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Publishing Group. 2012;44(4):369–375.
14. Jansen R, Hottenga JJ, Nivard MG, Abdellaoui A, Laport B, de Geus EJ, et al. Conditional eQTL Analysis Reveals Allelic Heterogeneity of Gene Expression. Human Molecular Genetics. 2017. doi: 10.1093/hmg/ddx043 28165122
15. Hormozdiari F, Zhu A, Kichaev G, Ju CJ, Segre AV, Joo JWJ, et al. Widespread Allelic Heterogeneity in Complex Traits. AJHG. 2017;100(5):789–802. doi: 10.1016/j.ajhg.2017.04.005
16. Brown AA, Vinuela A, Delaneau O, Spector TD, Small KS, Dermitzakis ET. Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues. Nature Genetics. 2017. doi: 10.1038/ng.3979
17. Servin B, Stephens M. Imputation-based analysis of association studies: Candidate regions and quantitative traits. PLoS Genetics. 2007;3(7):1296–1308. doi: 10.1371/journal.pgen.0030114
18. Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. Identifying Causal Variants at Loci with Multiple Signals of Association. Genetics. 2014;198(2):497–508. doi: 10.1534/genetics.114.167908 25104515
19. Farh KKH, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2014;518(7539):337–343. doi: 10.1038/nature13835 25363779
20. Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Poland GA, et al. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics. Genetics. 2015;200(3):719–736. doi: 10.1534/genetics.115.176107 25948564
21. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32(10):1493–1501. doi: 10.1093/bioinformatics/btw018 26773131
22. Hormozdiari F, Kichaev G, Yang WY, Pasaniuc B, Eskin E. Identification of causal genes for complex traits. Bioinformatics. 2015;31(12):i206–i213. doi: 10.1093/bioinformatics/btv240 26072484
23. Pastinen T, Hudson TJ. Cis-acting regulatory variation in the human genome. Science (New York, NY). 2004;306(5696):647–650. doi: 10.1126/science.1101659
24. Hasin-Brumshtein Y, Hormozdiari F, Martin L, van Nas A, Eskin E, Lusis AJ, et al. Allele-specific expression and eQTL analysis in mouse adipose tissue. BMC Genomics. 2014;15(1):471. doi: 10.1186/1471-2164-15-471 24927774
25. Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Research. 2015;25(7):927–936. doi: 10.1101/gr.192278.115 25953952
26. Mohammadi P, Castel SE, Brown AA, Lappalainen T. Quantifying the regulatory effect size of cis -acting genetic variation using allelic fold change. Genome Research. 2017; p. 1–13.
27. Yan H. Allelic Variation in Human Gene Expression. Science. 2002;297(5584):1143–1143. doi: 10.1126/science.1072545 12183620
28. Verlaan DJ, Ge B, Grundberg E, Hoberman R, Lam KCL, Koka V, et al. Targeted screening of cis - regulatory variation in human haplotypes. Genome Research. 2009; p. 118–127. doi: 10.1101/gr.084798.108 18971308
29. Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nature Reviews Genetics. 2010;11(8):533–538. doi: 10.1038/nrg2815 20567245
30. Zhang K, Li JB, Gao Y, Egli D, Xie B, Deng J, et al. Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human. Nature methods. 2009;6(8):613–618. doi: 10.1038/nmeth.1357 19620972
31. Cowles CR, Hirschhorn JN, Altshuler D, Lander ES. Detection of regulatory variation in mouse genes. Nature Genetics. 2002;32(3):432–437. doi: 10.1038/ng992 12410233
32. Nica AC, Dermitzakis ET. Expression quantitative trait loci: Present and future. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368 (1620). doi: 10.1098/rstb.2012.0362
33. Nagel M, Jansen PR, Stringer S, Watanabe K, Leeuw CAD, Bryois J, et al. Meta-analysis of genome-wide association studies for neuroticism in 449, 484 individuals identifies novel genetic loci and pathways. Nature genetics. 2018;50 : 920–927. doi: 10.1038/s41588-018-0151-7 29942085
34. Lam M, Trampush JW, Yu J, Glahn DC, Malhotra AK, Lam M, et al. Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets Resource Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Reports. 2017;21(9):2597–2613. doi: 10.1016/j.celrep.2017.11.028 29186694
35. Gonnermann A, Framke T, Großhennig A, Koch A. No solution yet for combining two independent studies in the presence of heterogeneity. Statistics in Medicine. 2015;34(16):2476–2480. doi: 10.1002/sim.6473 26040434
36. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods. 2010;1(2):97–111. doi: 10.1002/jrsm.12 26061376
37. Kumasaka N, Knights AJ, Gaffney DJ. technical reports Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nature Genetics. 2016;48(2). doi: 10.1038/ng.3467
38. Hu Y, Sun W, Tzeng J, C P. Proper Use of Allele-Specific Expression Improves Statistical Power for cis -eQTL Mapping with RNA-Seq Data. J Am Stat Assoc. 2015;110(511):962–974. doi: 10.1080/01621459.2015.1038449 26568645
39. Harvey CT, Moyerbrailean GA, Davis GO, Wen X, Luca F, Pique-regi R. Genetics and population analysis QuASAR: quantitative allele-specific analysis of reads. Bioinformatics. 2015;31(December 2014):1235–1242. doi: 10.1093/bioinformatics/btu802 25480375
40. Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics. 2009;25(24):3207–3212. doi: 10.1093/bioinformatics/btp579 19808877
41. Pirinen M, Lappalainen T, Zaitlen NA, GTEx Consortium, Dermitzakis ET, Donnelly P, et al. Assessing allele-specific expression across multiple tissues from RNA-seq read data. Bioinformatics. 2015;31(15):2497–2504. doi: 10.1093/bioinformatics/btv074 25819081
42. Chen W, Larrabee BR, Ovsyannikova IG, Kennedy RB, Haralambieva IH, Poland GA, et al. Fine mapping causal variants with an approximate bayesian method using marginal test statistics. Genetics. 2015;200(3):719–736. doi: 10.1534/genetics.115.176107 25948564
43. Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. American Journal of Human Genetics. 2016;99(6):1245–1260. doi: 10.1016/j.ajhg.2016.10.003 27866706
44. Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics. 2007;39(10):1208–1216. doi: 10.1038/ng2119 17873875
45. Ernst J, Kellis M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nature Biotechnology. 2010;28(8):817–825. doi: 10.1038/nbt.1662 20657582
46. Ernst J, Kellis M. ChromHMM: automating chromatin - state discovery and characterization. Nature Methods. 2012;9(3):215–216. doi: 10.1038/nmeth.1906 22373907
47. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–330. doi: 10.1038/nature14248 25693563
48. van de Geijn B, McVicker G, Gilad Y, Pritchard JK. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nature Methods. 2015;12(11):1061–3. doi: 10.1038/nmeth.3582 26366987
49. Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and eQTL Signals Detects Target Genes. The American Journal of Human Genetics. 2016;99(6):1245–1260. doi: 10.1016/j.ajhg.2016.10.003 27866706
50. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213. doi: 10.1038/nature24277
51. Howie BN, Donnelly P, Marchini J. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genetics. 2009;5(6). doi: 10.1371/journal.pgen.1000529 19543373
52. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–1111. doi: 10.1093/bioinformatics/btp120 19289445
53. DeLuca D, Levin J, Sivachenko A, Fennell T, Nazaire M, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;11(28):1530–2. doi: 10.1093/bioinformatics/bts196
Štítky
Genetika Reprodukční medicína
Článek Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathwayČlánek A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survivalČlánek A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivityČlánek Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2019 Číslo 12- IVF a rakovina prsu – zvyšují hormony riziko vzniku rakoviny?
- Akutní intermitentní porfyrie
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Růst a vývoj dětí narozených pomocí IVF
- Transthyretinová amyloidóza z pohledu neurologa a kardiologa aneb jak se vyhnout „misdiagnostice“?
-
Všechny články tohoto čísla
- Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives
- Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content
- A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes
- A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21
- Experimental population modification of the malaria vector mosquito, Anopheles stephensi
- The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain
- Architecture of the Escherichia coli nucleoid
- Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy
- Leveraging allelic imbalance to refine fine-mapping for eQTL studies
- A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survival
- An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior
- Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval
- Modulators of hormonal response regulate temporal fate specification in the Drosophila brain
- Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana
- Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism
- Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
- The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor
- Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging
- Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway
- Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans
- Identification of avoidance genes through neural pathway-specific forward optogenetics
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Drosophila RpS12 controls translation, growth, and cell competition through Xrp1
- An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs
- Correction: Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria
- Hybridization promotes asexual reproduction in Caenorhabditis nematodes
- Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization
- Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy
- A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity
- Genetic variation in GC and CYP2R1 affects 25-hydroxyvitamin D concentration and skeletal parameters: A genome-wide association study in 24-month-old Finnish children
- Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
- A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays
- Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes
- APOBEC3A is a prominent cytidine deaminase in breast cancer
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage
- CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4
- Correction: Origins of DNA replication
- Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII
- BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana
- Cell elimination strategies upon identity switch via modulation of apterous in Drosophila wing disc
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Architecture of the Escherichia coli nucleoid
- APOBEC3A is a prominent cytidine deaminase in breast cancer
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání