-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaIdentification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content
Autoři: Marco Giovannetti aff001; Christian Göschl aff001; Christof Dietzen aff002; Stig U. Andersen aff003; Stanislav Kopriva aff002; Wolfgang Busch aff001
Působiště autorů: Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria aff001; University of Cologne, Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany aff002; Department of Molecular Biology and Genetics, Aarhus University, Denmark aff003; Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, La Jolla, California, United States of America aff004
Vyšlo v časopise: Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008126
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008126Souhrn
Phosphate represents a major limiting factor for plant productivity. Plants have evolved different solutions to adapt to phosphate limitation ranging from a profound tuning of their root system architecture and metabolic profile to the evolution of widespread mutualistic interactions. Here we elucidated plant responses and their genetic basis to different phosphate levels in a plant species that is widely used as a model for AM symbiosis: Lotus japonicus. Rather than focussing on a single model strain, we measured root growth and anion content in response to different levels of phosphate in 130 Lotus natural accessions. This allowed us not only to uncover common as well as divergent responses within this species, but also enabled Genome Wide Association Studies by which we identified new genes regulating phosphate homeostasis in Lotus. Among them, we showed that insertional mutants of a cytochrome B5 reductase and a Leucine-Rich-Repeat receptor showed different phosphate concentration in plants grown under phosphate sufficient condition. Under low phosphate conditions, we found a correlation between plant biomass and the decrease of plant phosphate concentration in plant tissues, representing a dilution effect. Altogether our data of the genetic and phenotypic variation within a species capable of AM complements studies that have been conducted in Arabidopsis, and advances our understanding of the continuum of genotype by phosphate level interaction existing throughout dicot plants.
Klíčová slova:
Anions – Arabidopsis thaliana – Genetic loci – Genome-wide association studies – Molecular genetics – Phosphates – Plant genetics – Root growth
Zdroje
1. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L. Phosphate Availability Alters Architecture and Causes Changes in Hormone Sensitivity in the Arabidopsis Root System. Plant Physiol. 2002;129 : 244–256. doi: 10.1104/pp.010934 12011355
2. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, et al. Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet. 2007;39 : 792–796. doi: 10.1038/ng2041 17496893
3. Wang X, Wang Z, Zheng Z, Dong J, Song L, Sui L, et al. Genetic dissection of Fe-dependent signaling in root developmental responses to phosphate deficiency. Plant Physiol. 2019; pp.00907.2018. doi: 10.1104/pp.18.00907 30420567
4. Müller J, Toev T, Heisters M, Teller J, Moore KL, Hause G, et al. Iron-Dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability. Dev Cell. 2015;33 : 216–230. doi: 10.1016/j.devcel.2015.02.007 25898169
5. Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev. 2001;15 : 2122–2133. doi: 10.1101/gad.204401 11511543
6. Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, et al. A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis. PLOS Genet. 2010;6: e1001102. doi: 10.1371/journal.pgen.1001102 20838596
7. Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, Lorenzo L de, et al. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proc Natl Acad Sci. 2014;111 : 14947–14952. doi: 10.1073/pnas.1404654111 25271326
8. Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, et al. Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci U S A. 2014;111 : 14953–14958. doi: 10.1073/pnas.1404680111 25271318
9. Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, et al. SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice. Plant Cell. 2014;26 : 1586–1597. doi: 10.1105/tpc.114.123208 24692424
10. Essigmann B, Güler S, Narang RA, Linke D, Benning C. Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1998;95 : 1950–1955. doi: 10.1073/pnas.95.4.1950 9465123
11. Sakuraba Y, Kanno S, Mabuchi A, Monda K, Iba K, Yanagisawa S. A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition. Nat Plants. 2018;4 : 1089. doi: 10.1038/s41477-018-0294-7 30518831
12. Briat J-F, Rouached H, Tissot N, Gaymard F, Dubos C. Integration of P, S, Fe, and Zn nutrition signals in Arabidopsis thaliana: potential involvement of PHOSPHATE STARVATION RESPONSE 1 (PHR1). Front Plant Sci. 2015;6. doi: 10.3389/fpls.2015.00290 25972885
13. Kisko M, Bouain N, Safi A, Medici A, Akkers RC, Secco D, et al. LPCAT1 controls phosphate homeostasis in a zinc-dependent manner. Harrison MJ, editor. eLife. 2018;7: e32077. doi: 10.7554/eLife.32077 29453864
14. Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, et al. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci. 2017;114: E9403–E9412. doi: 10.1073/pnas.1710455114 28973917
15. Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S, Kracher B, et al. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent. Cell. 2016;165 : 464–474. doi: 10.1016/j.cell.2016.02.028 26997485
16. Castrillo G, Teixeira PJPL, Paredes SH, Law TF, de Lorenzo L, Feltcher ME, et al. Root microbiota drive direct integration of phosphate stress and immunity. Nature. 2017;543 : 513–518. doi: 10.1038/nature21417 28297714
17. Paredes SH, Gao T, Law TF, Finkel OM, Mucyn T, Teixeira PJPL, et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLOS Biol. 2018;16: e2003962. doi: 10.1371/journal.pbio.2003962 29462153
18. Choi J, Summers W, Paszkowski U. Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annu Rev Phytopathol. 2018;56 : 135–160. doi: 10.1146/annurev-phyto-080516-035521 29856935
19. Giovannetti M, Volpe V, Salvioli A, Bonfante P. Chapter 7—Fungal and Plant Tools for the Uptake of Nutrients in Arbuscular Mycorrhizas: A Molecular View. In: Johnson NC, Gehring C, Jansa J, editors. Mycorrhizal Mediation of Soil. Elsevier; 2017. pp. 107–128. doi: 10.1016/B978-0-12-804312-7.00007–3
20. Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol. 2018;220 : 1031–1046. doi: 10.1111/nph.15230 29806959
21. MacLean AM, Bravo A, Harrison MJ. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell. 2017;29 : 2319–2335. doi: 10.1105/tpc.17.00555 28855333
22. Carbonnel S, Gutjahr C. Control of arbuscular mycorrhiza development by nutrient signals. Front Plant Sci. 2014;5. doi: 10.3389/fpls.2014.00462 25309561
23. Shah N, Wakabayashi T, Kawamura Y, Skovbjerg CK, Wang M-Z, Mustamin Y, et al. Extreme genetic signatures of local adaptation during plant colonization. bioRxiv. 2018; 485789. doi: 10.1101/485789
24. Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A. Analysis of the Root System Architecture of Arabidopsis Provides a Quantitative Readout of Crosstalk between Nutritional Signals. Plant Cell. 2014;26 : 1480–1496. doi: 10.1105/tpc.113.122101 24692421
25. Giovannetti M, Małolepszy A, Göschl C, Busch W. Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus. In: Busch W, editor. Plant Genomics: Methods and Protocols. New York, NY: Springer New York; 2017. pp. 155–167. doi: 10.1007/978-1-4939-7003-2_11
26. Slovak R, Göschl C, Su X, Shimotani K, Shiina T, Busch W. A Scalable Open-Source Pipeline for Large-Scale Root Phenotyping of Arabidopsis. Plant Cell. 2014;26 : 2390–2403. doi: 10.1105/tpc.114.124032 24920330
27. Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M. Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ. 2003;26 : 1839–1850. doi: 10.1046/j.1365-3040.2003.01100.x
28. Ristova D, Giovannetti M, Metesch K, Busch W. Natural genetic variation shapes root system responses to phytohormones in Arabidopsis. Plant J. 2018;96 : 468–481. doi: 10.1111/tpj.14034 30030851
29. Jarrell WM, Beverly RB. The Dilution Effect in Plant Nutrition Studies. In: Brady NC, editor. Advances in Agronomy. Academic Press; 1981. pp. 197–224. doi: 10.1016/S0065-2113(08)60887-1
30. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38 : 203–208. doi: 10.1038/ng1702 16380716
31. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, et al. Efficient Control of Population Structure in Model Organism Association Mapping. Genetics. 2008;178 : 1709–1723. doi: 10.1534/genetics.107.080101 18385116
32. Seren Ü, Vilhjálmsson BJ, Horton MW, Meng D, Forai P, Huang YS, et al. GWAPP: A Web Application for Genome-Wide Association Mapping in Arabidopsis. Plant Cell. 2012;24 : 4793–4805. doi: 10.1105/tpc.112.108068 23277364
33. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell. 1996;86 : 423–433. doi: 10.1016/s0092-8674(00)80115-4 8756724
34. Cattaneo P, Hardtke CS. BIG BROTHER Uncouples Cell Proliferation from Elongation in the Arabidopsis Primary Root. Plant Cell Physiol. 2017;58 : 1519–1527. doi: 10.1093/pcp/pcx091 28922745
35. Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D, Yong-Villalobos L, Oropeza-Aburto A, Raya-González J, et al. Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. Proc Natl Acad Sci. 2017;114: E3563–E3572. doi: 10.1073/pnas.1701952114 28400510
36. Balzergue C, Dartevelle T, Godon C, Laugier E, Meisrimler C, Teulon J-M, et al. Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation. Nat Commun. 2017;8 : 15300. doi: 10.1038/ncomms15300 28504266
37. Domergue F, Vishwanath SJ, Joubès J, Ono J, Lee JA, Bourdon M, et al. Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition. Plant Physiol. 2010;153 : 1539–1554. doi: 10.1104/pp.110.158238 20571114
38. Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci Rep. 2016;6 : 39447. doi: 10.1038/srep39447 28008948
39. Małolepszy A, Mun T, Sandal N, Gupta V, Dubin M, Urbański D, et al. The LORE1 insertion mutant resource. Plant J. 2016;88 : 306–317. doi: 10.1111/tpj.13243 27322352
40. Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann Stat. 2001;29 : 1165–1188.
41. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29 : 24–26. doi: 10.1038/nbt.1754 21221095
42. Ames BN. [10] Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology. Academic Press; 1966. pp. 115–118. doi: 10.1016/0076-6879(66)08014-5
43. Ward JT, Lahner B, Yakubova E, Salt DE, Raghothama KG. The Effect of Iron on the Primary Root Elongation of Arabidopsis during Phosphate Deficiency. Plant Physiol. 2008;147 : 1181–1191. doi: 10.1104/pp.108.118562 18467463
44. Volpe V, Giovannetti M, Sun X-G, Fiorilli V, Bonfante P. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant Cell Environ. 2016;39 : 660–671. doi: 10.1111/pce.12659 26476189
45. Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, et al. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature. 2010;465 : 627–631. doi: 10.1038/nature08800 20336072
46. Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V, Seren Ü, et al. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. Hardtke CS, editor. eLife. 2016;5: e22502. doi: 10.7554/eLife.22502 27966430
47. Chao D-Y, Silva A, Baxter I, Huang YS, Nordborg M, Danku J, et al. Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thaliana. PLOS Genet. 2012;8: e1002923. doi: 10.1371/journal.pgen.1002923 22969436
48. Koprivova A, Giovannetti M, Baraniecka P, Lee B-R, Grondin C, Loudet O, et al. Natural Variation in the ATPS1 Isoform of ATP Sulfurylase Contributes to the Control of Sulfate Levels in Arabidopsis. Plant Physiol. 2013;163 : 1133–1141. doi: 10.1104/pp.113.225748 24027241
49. Huang X-Y, Chao D-Y, Koprivova A, Danku J, Wirtz M, Müller S, et al. Nuclear Localised MORE SULPHUR ACCUMULATION1 Epigenetically Regulates Sulphur Homeostasis in Arabidopsis thaliana. PLOS Genet. 2016;12: e1006298. doi: 10.1371/journal.pgen.1006298 27622452
50. Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, et al. A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1. PLOS Genet. 2010;6: e1001193. doi: 10.1371/journal.pgen.1001193 21085628
51. Satbhai SB, Setzer C, Freynschlag F, Slovak R, Kerdaffrec E, Busch W. Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency. Nat Commun. 2017;8 : 15603. doi: 10.1038/ncomms15603 28537266
52. Li B, Sun L, Huang J, Göschl C, Shi W, Chory J, et al. GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nat Commun. 2019;10 : 1–13. doi: 10.1038/s41467-018-07882-8
53. Julkowska MM, Koevoets IT, Mol S, Hoefsloot H, Feron R, Tester MA, et al. Genetic Components of Root Architecture Remodeling in Response to Salt Stress. Plant Cell. 2017;29 : 3198–3213. doi: 10.1105/tpc.16.00680 29114015
54. Bouain N, Satbhai SB, Korte A, Saenchai C, Desbrosses G, Berthomieu P, et al. Natural allelic variation of the AZI1 gene controls root growth under zinc-limiting condition. PLOS Genet. 2018;14: e1007304. doi: 10.1371/journal.pgen.1007304 29608565
55. Gifford ML, Banta JA, Katari MS, Hulsmans J, Chen L, Ristova D, et al. Plasticity Regulators Modulate Specific Root Traits in Discrete Nitrogen Environments. PLOS Genet. 2013;9: e1003760. doi: 10.1371/journal.pgen.1003760 24039603
56. Stetter MG, Schmid K, Ludewig U. Uncovering Genes and Ploidy Involved in the High Diversity in Root Hair Density, Length and Response to Local Scarce Phosphate in Arabidopsis thaliana. PLOS ONE. 2015;10: e0120604. doi: 10.1371/journal.pone.0120604 25781967
57. Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández‐Ugalde O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur J Soil Sci. 2018;69 : 140–153. doi: 10.1111/ejss.12499
58. Yang M, Lu K, Zhao F-J, Xie W, Ramakrishna P, Wang G, et al. Genome-Wide Association Studies Reveal the Genetic Basis of Ionomic Variation in Rice. Plant Cell. 2018;30 : 2720–2740. doi: 10.1105/tpc.18.00375 30373760
59. Oh YJ, Kim H, Seo SH, Hwang BG, Chang YS, Lee J, et al. Cytochrome b5 Reductase 1 Triggers Serial Reactions that Lead to Iron Uptake in Plants. Mol Plant. 2016;9 : 501–513. doi: 10.1016/j.molp.2015.12.010 26712506
60. Yang H, Zhang X, Gaxiola RA, Xu G, Peer WA, Murphy AS. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot. 2014;65 : 3045–3053. doi: 10.1093/jxb/eru149 24723407
61. Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science. 2014;346 : 343–346. doi: 10.1126/science.1257800 25324386
62. Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Commun. 2013;4 : 2191. doi: 10.1038/ncomms3191 23934307
Štítky
Genetika Reprodukční medicína
Článek A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survivalČlánek Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathwayČlánek A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivityČlánek Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2019 Číslo 12- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- IVF a rakovina prsu – zvyšují hormony riziko vzniku rakoviny?
- Akutní intermitentní porfyrie
- Růst a vývoj dětí narozených pomocí IVF
- Vztah užívání alkoholu a mužské fertility
-
Všechny články tohoto čísla
- Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives
- Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content
- A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes
- A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21
- Experimental population modification of the malaria vector mosquito, Anopheles stephensi
- The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain
- Architecture of the Escherichia coli nucleoid
- Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy
- Leveraging allelic imbalance to refine fine-mapping for eQTL studies
- A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survival
- An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior
- Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval
- Modulators of hormonal response regulate temporal fate specification in the Drosophila brain
- Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana
- Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism
- Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
- The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor
- Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging
- Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway
- Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans
- Identification of avoidance genes through neural pathway-specific forward optogenetics
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Drosophila RpS12 controls translation, growth, and cell competition through Xrp1
- An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs
- Correction: Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria
- Hybridization promotes asexual reproduction in Caenorhabditis nematodes
- Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization
- Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy
- A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity
- Genetic variation in GC and CYP2R1 affects 25-hydroxyvitamin D concentration and skeletal parameters: A genome-wide association study in 24-month-old Finnish children
- Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
- A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays
- Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes
- APOBEC3A is a prominent cytidine deaminase in breast cancer
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage
- CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4
- Correction: Origins of DNA replication
- Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII
- BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana
- Cell elimination strategies upon identity switch via modulation of apterous in Drosophila wing disc
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Architecture of the Escherichia coli nucleoid
- APOBEC3A is a prominent cytidine deaminase in breast cancer
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání