-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaZfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage
Autoři: Sebastian E. Rojas Villa aff001; Fanju W. Meng aff002; Benoît Biteau aff002
Působiště autorů: Department of Biology, University of Rochester, Rochester, New York, United States of America aff001; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America aff002
Vyšlo v časopise: Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008553
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008553Souhrn
Many tissues rely on resident stem cell population to maintain homeostasis. The balance between cell proliferation and differentiation is critical to permit tissue regeneration and prevent dysplasia, particularly following tissue damage. Thus, understanding the cellular processes and genetic programs that coordinate these processes is essential. Here, we report that the conserved transcription factor zfh2 is specifically expressed in Drosophila adult intestinal stem cell and progenitors and is a critical regulator of cell differentiation in this lineage. We show that zfh2 expression is required and sufficient to drive the activation of enteroblasts, the non-proliferative progenitors of absorptive cells. This transition is characterized by the transient formation of thin membrane protrusions, morphological changes characteristic of migratory cells and compensatory stem cell proliferation. We found that zfh2 acts in parallel to insulin signaling and upstream of the TOR growth-promoting pathway during early differentiation. Finally, maintaining zfh2 expression in late enteroblasts blocks terminal differentiation and leads to the formation of highly dysplastic lesions, defining a new late cell differentiation transition. Together, our study greatly improves our understanding of the cascade of cellular changes and regulatory steps that control differentiation in the adult fly midgut and identifies zfh2 as a major player in these processes.
Klíčová slova:
Cell differentiation – Differentiated tumors – Drosophila melanogaster – Gastrointestinal tract – Insulin signaling – Stem cells – Transcription factors – TOR signaling
Zdroje
1. Neumuller R.A. and Knoblich J.A., Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev, 2009. 23(23): p. 2675–99. doi: 10.1101/gad.1850809 19952104
2. Micchelli C.A. and Perrimon N., Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 2006. 439(7075): p. 475–9. doi: 10.1038/nature04371 16340959
3. Ohlstein B. and Spradling A., The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 2006. 439(7075): p. 470–4. doi: 10.1038/nature04333 16340960
4. Biteau B. and Jasper H., Slit/Robo Signaling Regulates Cell Fate Decisions in the Intestinal Stem Cell Lineage of Drosophila. Cell Rep, 2014. 7(6): p. 1867–75. doi: 10.1016/j.celrep.2014.05.024 24931602
5. Amcheslavsky A., Jiang J., and Ip Y.T., Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell, 2009. 4(1): p. 49–61. doi: 10.1016/j.stem.2008.10.016 19128792
6. Buchon N., et al., Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe, 2009. 5(2): p. 200–11. doi: 10.1016/j.chom.2009.01.003 19218090
7. Chatterjee M. and Ip Y.T., Pathogenic stimulation of intestinal stem cell response in Drosophila. J Cell Physiol, 2009. 220(3): p. 664–71. doi: 10.1002/jcp.21808 19452446
8. Jiang H., et al., Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 2009. 137(7): p. 1343–55. doi: 10.1016/j.cell.2009.05.014 19563763
9. Amcheslavsky A., et al., Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J Cell Biol, 2011. 193(4): p. 695–710. doi: 10.1083/jcb.201103018 21555458
10. Kapuria S., et al., Notch-Mediated Suppression of TSC2 Expression Regulates Cell Differentiation in the Drosophila Intestinal Stem Cell Lineage. PLoS Genet, 2012. 8(11): p. e1003045. doi: 10.1371/journal.pgen.1003045 23144631
11. Choi N.H., Lucchetta E., and Ohlstein B., Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc Natl Acad Sci U S A, 2011. 108(46): p. 18702–7. doi: 10.1073/pnas.1109348108 22049341
12. Xiang J., et al., EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nat Commun, 2017. 8: p. 15125. doi: 10.1038/ncomms15125 28485389
13. Antonello Z.A., et al., Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR-8-Escargot switch. EMBO J, 2015. 34(15): p. 2025–41. doi: 10.15252/embj.201591517 26077448
14. Zhai Z., et al., Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. Nat Commun, 2015. 6: p. 10219. doi: 10.1038/ncomms10219 26690827
15. Chen J., et al., A feedback amplification loop between stem cells and their progeny promotes tissue regeneration and tumorigenesis. Elife, 2016. 5.
16. Lai Z.C., Fortini M.E., and Rubin G.M., The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech Dev, 1991. 34(2–3): p. 123–34. doi: 10.1016/0925-4773(91)90049-c 1680377
17. Terriente J., et al., The Drosophila gene zfh2 is required to establish proximal-distal domains in the wing disc. Dev Biol, 2008. 320(1): p. 102–12. doi: 10.1016/j.ydbio.2008.04.028 18571155
18. Perea D., et al., Multiple roles of the gene zinc finger homeodomain-2 in the development of the Drosophila wing. Mech Dev, 2013. 130(9–10): p. 467–81. doi: 10.1016/j.mod.2013.06.002 23811114
19. Guarner A., et al., The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments. Dev Biol, 2014. 385(2): p. 350–65. doi: 10.1016/j.ydbio.2013.10.011 24144920
20. Lundell M.J. and Hirsh J., The zfh-2 gene product is a potential regulator of neuron-specific dopa decarboxylase gene expression in Drosophila. Dev Biol, 1992. 154(1): p. 84–94. doi: 10.1016/0012-1606(92)90050-q 1426635
21. Helenius I.T., et al., Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen. J Immunol, 2016. 196(2): p. 655–667. doi: 10.4049/jimmunol.1501708 26643480
22. Sun X., et al., Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia, 2014. 16(5): p. 377–89. doi: 10.1016/j.neo.2014.05.001 24934715
23. Zhang Z., et al., ATBF1-a messenger RNA expression is correlated with better prognosis in breast cancer. Clin Cancer Res, 2005. 11(1): p. 193–8. 15671546
24. Cho Y.G., et al., Genetic alterations of the ATBF1 gene in gastric cancer. Clin Cancer Res, 2007. 13(15 Pt 1): p. 4355–9.
25. Sun X., et al., Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet, 2005. 37(4): p. 407–12. doi: 10.1038/ng1528 15750593
26. Hemmi K., et al., A homeodomain-zinc finger protein, ZFHX4, is expressed in neuronal differentiation manner and suppressed in muscle differentiation manner. Biol Pharm Bull, 2006. 29(9): p. 1830–5. doi: 10.1248/bpb.29.1830 16946494
27. Qing T., et al., Somatic mutations in ZFHX4 gene are associated with poor overall survival of Chinese esophageal squamous cell carcinoma patients. Sci Rep, 2017. 7(1): p. 4951. doi: 10.1038/s41598-017-04221-7 28694483
28. Buchon N., et al., Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep, 2013. 3(5): p. 1725–38. doi: 10.1016/j.celrep.2013.04.001 23643535
29. Doupe D.P., et al., Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci U S A, 2018.
30. Ohlstein B. and Spradling A., Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science, 2007. 315(5814): p. 988–92. doi: 10.1126/science.1136606 17303754
31. Calleja M., et al., Visualization of gene expression in living adult Drosophila. Science, 1996. 274(5285): p. 252–5. doi: 10.1126/science.274.5285.252 8824191
32. Zhai Z., Boquete J.P., and Lemaitre B., A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila. PLoS Genet, 2017. 13(6): p. e1006854. doi: 10.1371/journal.pgen.1006854 28662029
33. Evans C.J., et al., G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods, 2009. 6(8): p. 603–5. doi: 10.1038/nmeth.1356 19633663
34. Biteau B., et al., Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet, 2010. 6(10): p. e1001159. doi: 10.1371/journal.pgen.1001159 20976250
35. O'Brien L.E., et al., Altered modes of stem cell division drive adaptive intestinal growth. Cell, 2011. 147(3): p. 603–14. doi: 10.1016/j.cell.2011.08.048 22036568
36. Yamashita Y.M., Inaba M., and Buszczak M., Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol, 2018. 34: p. 59–84. doi: 10.1146/annurev-cellbio-100617-062932 30074816
37. Perdigoto C.N., Schweisguth F., and Bardin A.J., Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development, 2011. 138(21): p. 4585–95. doi: 10.1242/dev.065292 21965616
38. Korzelius J., et al., Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. EMBO J, 2014. 33(24): p. 2967–82. doi: 10.15252/embj.201489072 25298397
39. Martin J.L., et al., Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. Elife, 2018. 7.
40. Jung C.G., et al., Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation. Development, 2005. 132(23): p. 5137–45. doi: 10.1242/dev.02098 16251211
41. Sun X., et al., Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS One, 2014. 9(3): p. e92746. doi: 10.1371/journal.pone.0092746 24651376
42. Zhang S., et al., AT motif binding factor 1 (ATBF1) is highly phosphorylated in embryonic brain and protected from cleavage by calpain-1. Biochem Biophys Res Commun, 2012. 427(3): p. 537–41. doi: 10.1016/j.bbrc.2012.09.092 23022192
43. Meng F.W. and Biteau B., A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine. Cell Rep, 2015. 13(5): p. 906–14. doi: 10.1016/j.celrep.2015.09.061 26565904
44. Schindelin J., et al., Fiji: an open-source platform for biological-image analysis. Nat Methods, 2012. 9(7): p. 676–82. doi: 10.1038/nmeth.2019 22743772
Štítky
Genetika Reprodukční medicína
Článek Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathwayČlánek A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survivalČlánek A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivityČlánek Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2019 Číslo 12- IVF a rakovina prsu – zvyšují hormony riziko vzniku rakoviny?
- Akutní intermitentní porfyrie
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Transthyretinová amyloidóza z pohledu neurologa a kardiologa aneb jak se vyhnout „misdiagnostice“?
- Délka menstruačního cyklu jako marker ženské plodnosti
-
Všechny články tohoto čísla
- Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives
- Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content
- A mutant form of Dmc1 that bypasses the requirement for accessory protein Mei5-Sae3 reveals independent activities of Mei5-Sae3 and Rad51 in Dmc1 filament stability
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes
- A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21
- Experimental population modification of the malaria vector mosquito, Anopheles stephensi
- The polyamine transporter Slc18b1(VPAT) is important for both short and long time memory and for regulation of polyamine content in the brain
- Architecture of the Escherichia coli nucleoid
- Inhibition of FLT1 ameliorates muscular dystrophy phenotype by increased vasculature in a mouse model of Duchenne muscular dystrophy
- Leveraging allelic imbalance to refine fine-mapping for eQTL studies
- A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survival
- An autism-causing calcium channel variant functions with selective autophagy to alter axon targeting and behavior
- Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval
- Modulators of hormonal response regulate temporal fate specification in the Drosophila brain
- Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana
- Defects in the GINS complex increase the instability of repetitive sequences via a recombination-dependent mechanism
- Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
- The MITF-SOX10 regulated long non-coding RNA DIRC3 is a melanoma tumour suppressor
- Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging
- Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway
- Mediator subunit MDT-15/MED15 and Nuclear Receptor HIZR-1/HNF4 cooperate to regulate toxic metal stress responses in Caenorhabditis elegans
- Identification of avoidance genes through neural pathway-specific forward optogenetics
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Drosophila RpS12 controls translation, growth, and cell competition through Xrp1
- An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs
- Correction: Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria
- Hybridization promotes asexual reproduction in Caenorhabditis nematodes
- Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization
- Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy
- A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity
- Genetic variation in GC and CYP2R1 affects 25-hydroxyvitamin D concentration and skeletal parameters: A genome-wide association study in 24-month-old Finnish children
- Genetic determinants of genus—Level glycan diversity in a bacterial protein glycosylation system
- A divergent CheW confers plasticity to nucleoid-associated chemosensory arrays
- Selection signatures in goats reveal copy number variants underlying breed-defining coat color phenotypes
- APOBEC3A is a prominent cytidine deaminase in breast cancer
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage
- CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4
- Correction: Origins of DNA replication
- Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII
- BLISTER-regulated vegetative growth is dependent on the protein kinase domain of ER stress modulator IRE1A in Arabidopsis thaliana
- Cell elimination strategies upon identity switch via modulation of apterous in Drosophila wing disc
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- Architecture of the Escherichia coli nucleoid
- APOBEC3A is a prominent cytidine deaminase in breast cancer
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání