Experimental population modification of the malaria vector mosquito, Anopheles stephensi


Autoři: Thai Binh Pham aff001;  Celine Hien Phong aff001;  Jared B. Bennett aff002;  Kristy Hwang aff001;  Nijole Jasinskiene aff001;  Kiona Parker aff001;  Drusilla Stillinger aff001;  John M. Marshall aff003;  Rebeca Carballar-Lejarazú aff001;  Anthony A. James aff001
Působiště autorů: Department of Microbiology & Molecular Genetics, University of California, Irvine, California, United States of America aff001;  Biophysics Graduate Group, University of California, Berkeley, California, United States of America aff002;  Division of Epidemiology & Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America aff003;  Innovative Genomics Institute, Berkeley, California, United States of America aff004;  Department of Molecular Biology & Biochemistry, University of California, Irvine, California, United States of America aff005
Vyšlo v časopise: Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008440
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008440

Souhrn

Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed ‘full introduction’ (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6–8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6–12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13–16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs.

Klíčová slova:

Alleles – Eyes – Guide RNA – Larvae – Mosquitoes – Non-homologous end joining – Pupae – Variant genotypes


Zdroje

1. Maxmen A. How to defuse malaria’s ticking time bomb. Nature. 2018; 559: 458–465. doi: 10.1038/d41586-018-05772-z 30046090

2. Barreaux P, Barreaux AMG, Sternberg ED, Suh E, Waite JL, Whitehead SA, et al. Priorities for Broadening the Malaria Vector Control Tool Kit. Trends Parasitol. 2017 Oct;33(10):763–774. doi: 10.1016/j.pt.2017.06.003 Epub 2017 Jun 28. Review. 28668377

3. Weaver SC. Prediction and prevention of urban arbovirus epidemics: A challenge for the global virology community. Antiviral Res. 2018 Aug;156:80–84. doi: 10.1016/j.antiviral.2018.06.009 29906475.

4. White M, Conteh L, Cibulskis R, Ghani A. Costs and cost-effectiveness of malaria control interventions—a systematic review. Malar J. 2011;10:337. doi: 10.1186/1475-2875-10-337 22050911.

5. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The Effect of Malaria Control on Plasmodium Falciparum in Africa between 2000 and 2015. Nature. 2015;526.7572: 207–11. doi: 10.1038/nature15535 26375008

6. Mnzava AP, Knox TB, Temu EA, Trett A, Fornadel C, Hemingway J, et al. Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J. 2015 Apr 23;14:173. doi: 10.1186/s12936-015-0693-4 25899397.

7. Ranson H. Current and Future Prospects for Preventing Malaria Transmission via the Use of Insecticides. Cold Spring Harb Perspect Med. 2017 Nov 1;7(11). pii: a026823. doi: 10.1101/cshperspect.a026823 28507193.

8. Macias VM, James AA. Impact of genetic modification of vector populations on the malaria eradication agenda. In: Adelman Z. Genetic Control of Malaria and Dengue. Elsevier Academic Press. 2015. pp 423–444.

9. Hammond AM, Galizi R. Gene drives to fight malaria: current state and future directions. Pathog Glob Health. 2017 Dec;111(8):412–423. doi: 10.1080/20477724.2018.1438880 Epub 2018 Feb 19. 29457956

10. Carballar-Lejarazú R, James AA. Population modification of Anopheline species to control malaria transmission. Pathog Glob Health. 2018;111: 424–435. doi: 10.1080/20477724.2018.1427192 29385893.

11. Klassen W, Curtis CF. History of the sterile insect technique. In: Dyck VA, et al. The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management. Springer. 2005. pp. 3–36.

12. Dame DA, Curtis CF, Benedict MQ, Robinson AS, Knols BGJ. Historical applications of induced sterilisation in field populations of mosquitoes. Malar J. 2009;8 Suppl 2: S2. doi: 10.1186/1475-2875-8-S2-S2 19917072.

13. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA. 2015;112:E6736–E6743. doi: 10.1073/pnas.1521077112 26598698

14. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016 Jan;34(1):78–83. doi: 10.1038/nbt.3439 Epub 2015 Dec 7. 26641531.

15. Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012 Sep;30(9):828–30. doi: 10.1038/nbt.2350 22965050.

16. Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes. PLoS Neglected Tropical Diseases. 2015;9(7), e0003864. doi: 10.1371/journal.pntd.0003864 26135160

17. Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C, et al. Malaria control with genetically manipulated insect vectors. Science. 2002 Oct 4;298(5591):119–21. doi: 10.1126/science.1078278 12364786

18. Benedict M, D’Abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, et al. Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a scientific working group. Vector Borne Zoonotic Dis. 2008 Apr;8(2):127–66. doi: 10.1089/vbz.2007.0273 No abstract available. 18452399

19. Benedict M, Burt A, Capurro ML, De Barro P, Handler AM, Hayes KR, et al. Recommendations for Laboratory Containment and Management of Gene Drive Systems in Arthropods. Vector Borne Zoonotic Dis. 2018 Jan;18(1):2–13. doi: 10.1089/vbz.2017.2121 Epub 2017 Oct 17. 29040058

20. Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, et al. BIOSAFETY. Safeguarding gene drive experiments in the laboratory. Science. 2015 Aug 28;349(6251):927–9. doi: 10.1126/science.aac7932 Epub 2015 Jul 30. No abstract available. 26229113

21. Adelman Z, Akbari O, Bauer J, Bier E, Bloss C, Carter SR, et al. Rules of the road for insect gene drive research and testing. Nat Biotechnol. 2017 Aug 8;35(8):716–718. doi: 10.1038/nbt.3926 No abstract available. 28787415.

22. Target Malaria Resources. 2018 [cited 17 September 2018]. In: Target Malaria. https://targetmalaria.org/resources/

23. NASEM (National Academies of Sciences, Engineering, and Medicine). Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values. Washington, DC: The National Academies Press; 2016.

24. WHO. Guidance framework for testing of genetically modified mosquitoes. WHO/TDR publications; 2014. ISBN 978 92 4 150748 6.

25. James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ, Gottlieb M, et al. Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a Scientific Working Group†. Am J Trop Med Hyg. 2018 Jun;98(6_Suppl):1–49. doi: 10.4269/ajtmh.18-0083 29882508.

26. Carballar-Lejarazú R, Jasinskiene N, James AA. Exogenous gypsy insulator sequences modulate transgene expression in the malaria vector mosquito, Anopheles stephensi. Proc. Natl. Acad. Sci. USA. 2013;110, 7176–7181. doi: 10.1073/pnas.1304722110 23584017.

27. Isaacs A, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, et al. Transgenic Anopheles stephensi co-expressing single-chain antibodies resist Plasmodium falciparum development. Proc. Natl. Acad. Sci. USA. 2012;109, E1922–E1930. doi: 10.1073/pnas.1207738109 22689959

28. Hollingdale MR, Nardin EH, Tharavanij S, Schwartz AL, Nussenzweig RS. Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. J Immunol. 1984;132(2):909–913. 6317752.

29. Li F, Patra KP, Vinetz JM. An anti-Chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. J Infect Dis. 2005;192(5):878–887. doi: 10.1086/432552 16088838.

30. Nimmo DD, Alphey L, Meredith JM, Eggleston P. High efficiency site-specific genetic engineering of the mosquito genome. Insect Mol Biol. 2006 Apr;15(2):129–36. doi: 10.1111/j.1365-2583.2006.00615.x 16640723

31. Amenya DA, Bonizzoni M, Isaacs A, Jasinskiene N, Chen H, Marinotti O, et al. Comparative fitness assessment of Anopheles stephensi transgenic lines receptive to site-specific integration. Insect Molec. Biol. 2010;19, 263–269. doi: 10.1111/j.1365-2583.2009.00986.x 20113372

32. Isaacs A, Li F, Jasinskiene N, Chen X, Nirmala X, Marinotti O, et al. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathogens. 2011;7(4): 21533066,

33. Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature. 2002;417: 452–455. doi: 10.1038/417452a 12024215.

34. Nirmala X, Marinotti O, Sandoval JM, Phin S, Gakhar S, Jasinskiene N, et al. Functional characterization of the promoter of the vitellogenin gene, AsVg1, of the malaria vector, Anopheles stephensi. Insect. Biochem. Molec. Biol. 2006;36, 694–700. doi: 10.1016/j.ibmb.2006.05.011 16935218

35. Han Q, Calvo E, Marinotti O, Fang J, Rizzi M, James AA, et al. Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2003 Oct;12(5):483–90. doi: 10.1046/j.1365-2583.2003.00433.x 12974953.

36. Sánchez HM, Wu SL, Bennett JB, Marshall JM (2018) MGDrivE: A modular simulation framework for the spread of gene drives through spatially-explicit mosquito populations. bioRxiv https://doi.org/10.1101/350488.

37. Spielman A, Pollack RJ, Kiszewski AE, Telford SR 3rd. Issues in public health entomology. Vector Borne Zoonotic Dis. 2001;1, 3–19. doi: 10.1089/153036601750137606 12653132

38. Rasgon J, Scott TW. Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes. Insect Biochem. Mol. Biol. 2004;34, 707–713. doi: 10.1016/j.ibmb.2004.03.023 15242712

39. Massonnet-Bruneel B, Corre-Catelin N, Lacroix R, Lees RS, Hoang KP, Nimmo D, et al. Fitness of Transgenic Mosquito Aedes aegypti Males Carrying a Dominant Lethal Genetic System. PLoS ONE. 2013;8(5), e62711. doi: 10.1371/journal.pone.0062711 23690948.

40. Bargielowski I, Alphey L, Koella JC. Cost of Mating and Insemination Capacity of a Genetically Modified Mosquito Aedes aegypti OX513A Compared to Its Wild Type Counterpart. PLoS ONE. 2011;6: e26086. doi: 10.1371/journal.pone.0026086 22022518

41. Lima VL, Dias F, Nunes RD, Pereira LO, Santos TS, Chiarini LB, et al. The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal. PLoS One. 2012;7(6):e38349. doi: 10.1371/journal.pone.0038349 22701629.

42. Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol. 2017 Aug;33(8):633–644. doi: 10.1016/j.pt.2017.04.008 Epub 2017 May 23. Review. 28549573

43. Beaghton A, Hammond A, Nolan T, Crisanti A, Godfray HC, Burt A. Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing. Genetics. 2017 Apr;205(4):1587–1596. doi: 10.1534/genetics.116.197632 28159753

44. Eckhoff PA, Wenger EA, Godfray HCJ, Burt A. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics. Proc Natl Acad Sci USA. 2017;114(2), E255–E264. http://doi.org/10.1073/pnas.1611064114 28028208.

45. Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genetics. 2017;13(7), e1006796. doi: 10.1371/journal.pgen.1006796 28727785

46. Champer J, Liu J, Oh SY, Reeves R, Luthra A, Oakes, et al. Reducing resistant allele formation in CRISPR gene drives. Proc Natl Acad Sci USA. 2018;201720354, doi: 10.1073/pnas.1720354115 29735716

47. Marshall JM, Buchman A, Sánchez C HM, Akbari OS. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep. 2017 Jun 19;7(1):3776.doi: 10.1038/s41598-017-02744-7 28630470.

48. Hammond AM, Kyrou K, Bruttini M, North A, Galizi R, Karlsson X, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genetics. 2017;13(10), e1007039. doi: 10.1371/journal.pgen.1007039 28976972.

49. KaramiNejadRanjbar M, Eckermann KN, Ahmed HMM, Sánchez C HM, Dippel S, Marshall JM, Wimmer EA. Consequences of resistance evolution in a Cas9-based sex conversion-suppression gene drive for insect pest management. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6189–6194. doi: 10.1073/pnas.1713825115 Epub 2018 May 29. 29844184

50. Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018 Dec;36(11):1062–1066. doi: 10.1038/nbt.4245 Epub 2018 Sep 24. 30247490

51. Yamamoto DS, Sumitani M, Hatakeyama M, Matsuoka H. Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis. Transgenic Res. 2018;27: 51. doi: 10.1007/s11248-018-0057-2 29349579

52. Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, et al. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA. 1998;95(7), 3743–3747. doi: 10.1073/pnas.95.7.3743 9520437.

53. Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA. 1998;95(7), 3748–3751. doi: 10.1073/pnas.95.7.3748 9520438

54. Bhalla S. White eye, a new sex-linked mutant of Aedes aegypti. Mosq. News. 1968;28: 380–385.

55. Lefevre T, Ohm J, Dabiré KR, Cohuet A, Choisy M, Thomas MB, et al. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol Appl. 2017 Dec 16;11(4):456–469. doi: 10.1111/eva.12571 eCollection 2018 Apr. 29636799.

56. Thomas S, Ravishankaran S, Justin NAJA, Asokan A, Kalsingh TMJ, Mathai MT, et al. Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum: a study from a malaria-endemic urban setting, Chennai in India. Malar J. 2018 May 16;17(1):201. doi: 10.1186/s12936-018-2342-1 29769075.

57. Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, et al. Rethinking the extrinsic incubation period of malaria parasites. Parasit Vectors. 2018 Mar 12;11(1):178. doi: 10.1186/s13071-018-2761-4 Review. 29530073

58. Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?. International Journal of Environmental Research and Public Health. 2017;14(9), 1006. doi: 10.3390/ijerph14091006 28869513.

59. Robert MA, Okamoto K, Lloyd AL, Gould F. A Reduce and Replace Strategy for Suppressing Vector-Borne Diseases: Insights from a Deterministic Model. PLoS ONE. 2013;8(9): e73233. doi: 10.1371/journal.pone.0073233 24023839.

60. Jiang X, Peery A, Hall AB, Sharma A, Chen XG, Waterhouse RM, et al. Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biology. 2014;15 (9):459. doi: 10.1186/s13059-014-0459-2 25244985

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2019 Číslo 12

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×