Linking Crohn's Disease and Ankylosing Spondylitis: It's All about Genes!


article has not abstract


Published in the journal: . PLoS Genet 6(12): e32767. doi:10.1371/journal.pgen.1001223
Category: Perspective
doi: 10.1371/journal.pgen.1001223

Summary

article has not abstract

Chronic inflammatory arthritis, a hallmark of several inflammatory rheumatic diseases, and inflammatory bowel disease are both life-long conditions, with substantial morbidity and even mortality. These diseases are highly prevalent—for example, chronic arthritis has a frequency of approximately 2%–3% within a given population. Interestingly, the co-existence of gut and joint inflammation was found to be prominent in spondyloarthritis (SpA), a family of interrelated rheumatologic diseases. SpA has a number of typical clinical and genetic characteristics, including peripheral arthritis (particularly of lower limb joints) as well as inflammation of the axial skeleton (e.g., spine). Moreover, different forms of SpA may also affect other organs, such as the skin (psoriasis) or the eye (anterior uveitis), demonstrating the systemic nature of these diseases. Various subtypes of SpA have been described based upon clinical features, but any two may share important characteristics. The prototypical disorder of the SpA family is ankylosing spondylitis (AS), which is characterized by prominent inflammation of the axial skeleton (spine, sacroiliac joints), although other joints may also be affected. Other SpA diseases include infection-triggered reactive arthritis, some forms of juvenile idiopathic arthritis, arthritis in association with inflammatory bowel diseases (IBD), and some forms of psoriatic arthritis [1], [2].

The striking relationship between IBD and AS has been recognized for many years: up to 10% of IBD patients develop AS, and, vice versa, IBD commonly develops in patients primarily diagnosed with AS [3]. As both have an important underlying genetic heritability, it has been suggested that the two diseases could have an overlapping set of predisposing genes. Strong evidence for this idea has been derived from the Icelandic genealogy database: it was shown that AS and IBD have a strong elevated cross-risk ratio in first- and second-degree relatives. However, the precise nature of the predisposing genes remained unknown for some time [4].

In this issue of PLoS Genetics, Danoy et al. [5] report on the results of genome-wide association studies looking at a set of recently identified Crohn's disease (CD) susceptibility genes in a large cohort of AS patients [6]. This is the first large-scale study to address the issue of a possible genetic link between CD and AS by using a step-wise approach that includes both an initial exploratory and a confirmatory cohort. New loci associations were identified, including one within the intergenic region at chr1q32, found near the gene KIF21B, which encodes a protein of the kinesin motor family involved in transport along axonal and dendritic microtubules. However, a clear-cut association with KIR21B itself is not apparent from this study, so undoubtedly more work is needed in this area.

One particularly interesting aspect of the paper is the elucidation of a strong association with genes implicated in the Th17 pathway, a lymphocyte subset that has gathered much attention lately because of its prominent role in a variety of immune-mediated inflammatory disorders, including psoriasis and CD. While the association of AS with the receptor for IL-23, which is implicated in the expansion and survival of Th17 cells, has been previously reported [7], [8], Danoy and co-workers provide two additional links to the Th17 pathway. Firstly, they report a clear association with STAT-3, which is, amongst other things, implicated in IL-23R signal transduction. In addition, an association with the p40 subunit shared between IL-12 and IL-23 was revealed. It is intriguing that so many genes predispose to AS. The functional significance of these associations is, however, presently unclear. For example, some of the IL-23R single nucleotide polymorphisms associated with AS may confer either protection or susceptibility to the disease [7]. Nevertheless, more than 30 years after the discovery of HLA-B27 as a strong hereditability factor for AS [9], further evidence points to an important genetic susceptibility for adaptive immunity shared with CD [10].

Danoy et al. also found significant but weaker associations with the LRR2/MUC19 locus. This locus contains genes involved in the process of autophagy and epithelial integrity, respectively.

However, one important limitation of the new study is the potential bias caused by subclinical bowel inflammation. Approximately two-thirds of patients suffering from SpA, including AS, have microscopic signs of gut inflammation without any accompanying clinical gastrointestinal symptoms [11][13]. In fact, mucosal alterations are one of the first signs of ongoing inflammation in SpA. Histologically, the gut inflammation can be divided into acute (mimicking a short-term and self-limiting bacterial enterocolitis) and chronic types (with altered intestinal architecture, blunted and fused villi, and influx by mononuclear cells), common in enterogenic-triggered reactive arthritis and AS patients, respectively [12]. Furthermore, 6%–13% of these patients eventually develop IBD, particularly CD. This progression to overt CD is a very peculiar feature of the chronic type of inflammation where up to 20% of those that have chronic gut inflammation develop CD [3], [14]. Thus, even though the results of the present study were not altered significantly by excluding the cases of clinical IBD, it is conceivable that the genetic overlap between IBD and AS may be mirrored by the presence of subclinical gut inflammation. This is particularly the case for the chronic type of inflammation. Previously, a similar genetic link to the chronic subtype of inflammation was found for CARD15 [15], single nucleotide polymorphisms of which are also strongly linked to CD [16][18]. However, the frequency of CARD15 variants was not elevated in SpA patients with an acute type of inflammation or in patients lacking signs of mucosal inflammation [15]. Thus, it is clear that more studies are needed linking the presence of subclinical gut inflammation in AS to the association of genes. Other items on the research agenda should include the functional significance of the identified gene polymorphisms in shaping the immune response and the potential interaction between the single nucleotide polymorphism of the various genes identified and their impact on clinical manifestation of disease. It is clear that exciting times lie ahead for this area of research.


Zdroje

1. BraunJ

SieperJ

2007 Ankylosing spondylitis. Lancet 369 1379 1390

2. JacquesP

ElewautD

2008 Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol 1 364 371

3. MielantsH

VeysEM

CuvelierC

De VosM

GoemaereS

1995 The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J Rheumatol 22 2273 2278

4. ThjodleifssonB

GeirssonAJ

BjornssonS

BjarnasonI

2007 A common genetic background for inflammatory bowel disease and ankylosing spondylitis: a genealogic study in Iceland. Arthritis Rheum 56 2633 2639

5. DanoyP

PryceK

HadlerJ

BradburyLA

FarrarC

2010 Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn's disease. PLoS Genet 6 e1001195 doi:10.1371/journal.pgen.1001195

6. BarrettJC

HansoulS

NicolaeDL

ChoJH

DuerrRH

2008 Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40 955 962

7. BurtonPR

ClaytonDG

CardonLR

CraddockN

DeloukasP

2007 Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 39 1329 1337

8. RahmanP

InmanRD

GladmanDD

ReeveJP

PeddleL

2008 Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum 58 1020 1025

9. BrewertonDA

HartFD

NichollsA

CaffreyM

JamesDC

1973 Ankylosing spondylitis and HL-A 27. Lancet 1 904 907

10. DuerrRH

TaylorKD

BrantSR

RiouxJD

SilverbergMS

2006 A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314 1461 1463

11. MielantsH

VeysEM

CuvelierC

de VosM

1988 Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol 27 Suppl 2 95 105

12. CuvelierC

BarbatisC

MielantsH

De VosM

RoelsH

1987 Histopathology of intestinal inflammation related to reactive arthritis. Gut 28 394 401

13. Leirisalo-RepoM

TurunenU

StenmanS

HeleniusP

SeppalaK

1994 High frequency of silent inflammatory bowel disease in spondylarthropathy. Arthritis Rheum 37 23 31

14. De VosM

MielantsH

CuvelierC

ElewautA

VeysE

1996 Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 110 1696 1703

15. LaukensD

PeetersH

MarichalD

Vander CruyssenB

MielantsH

2005 CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn's disease. Ann Rheum Dis 64 930 935

16. HugotJP

ChamaillardM

ZoualiH

LesageS

CezardJP

2001 Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411 599 603

17. OguraY

BonenDK

InoharaN

NicolaeDL

ChenFF

2001 A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411 603 606

18. HampeJ

CuthbertA

CroucherPJ

MirzaMM

MascherettiS

2001 Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 357 1925 1928

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2010 Číslo 12

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
nový kurz
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Inhibitory karboanhydrázy v léčbě glaukomu
Autoři: as. MUDr. Petr Výborný, CSc., FEBO

Příběh jedlé sody
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se