Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss
Autoři:
Kévin T. Huguet aff001; Nicolas Rivard aff001; Daniel Garneau aff001; Jason Palanee aff001; Vincent Burrus aff001
Působiště autorů:
Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
aff001
Vyšlo v časopise:
Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008965
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008965
Souhrn
The mobilizable resistance island Salmonella genomic island 1 (SGI1) is specifically mobilized by IncA and IncC conjugative plasmids. SGI1, its variants and IncC plasmids propagate multidrug resistance in pathogenic enterobacteria such as Salmonella enterica serovars and Proteus mirabilis. SGI1 modifies and uses the conjugation apparatus encoded by the helper IncC plasmid, thus enhancing its own propagation. Remarkably, although SGI1 needs a coresident IncC plasmid to excise from the chromosome and transfer to a new host, these elements have been reported to be incompatible. Here, the stability of SGI1 and its helper IncC plasmid, each expressing a different fluorescent reporter protein, was monitored using fluorescence-activated cell sorting (FACS). Without selective pressure, 95% of the cells segregated into two subpopulations containing either SGI1 or the helper plasmid. Furthermore, FACS analysis revealed a high level of SGI1-specific fluorescence in IncC+ cells, suggesting that SGI1 undergoes active replication in the presence of the helper plasmid. SGI1 replication was confirmed by quantitative PCR assays, and extraction and restriction of its plasmid form. Deletion of genes involved in SGI1 excision from the chromosome allowed a stable coexistence of SGI1 with its helper plasmid without selective pressure. In addition, deletion of S003 (rep) or of a downstream putative iteron-based origin of replication, while allowing SGI1 excision, abolished its replication, alleviated the incompatibility with the helper plasmid and enabled its cotransfer to a new host. Like SGI1 excision functions, rep expression was found to be controlled by AcaCD, the master activator of IncC plasmid transfer. Transient SGI1 replication seems to be a key feature of the life cycle of this family of genomic islands. Sequence database analysis revealed that SGI1 variants encode either a replication initiator protein with a RepA_C domain, or an alternative replication protein with N-terminal replicase and primase C terminal 1 domains.
Klíčová slova:
Antibiotics – Arabinose – DNA replication – Flow cytometry – Genomics – Plasmid construction – Plasmids – Polymerase chain reaction
Zdroje
1. Guédon G, Libante V, Coluzzi C, Payot S, Leblond-Bourget N. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements that Pirate Bacterial Conjugative Systems. Genes. 2017;8. doi: 10.3390/genes8110337 29165361
2. Boyd DA, Peters GA, Ng L, Mulvey MR. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol Lett. 2000;189: 285–291. doi: 10.1111/j.1574-6968.2000.tb09245.x 10930753
3. Boyd D, Peters GA, Cloeckaert A, Boumedine KS, Chaslus-Dancla E, Imberechts H, et al. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol. 2001;183: 5725–5732. doi: 10.1128/JB.183.19.5725-5732.2001 11544236
4. Mulvey MR, Boyd DA, Olson AB, Doublet B, Cloeckaert A. The genetics of Salmonella genomic island 1. Microbes Infect. 2006;8: 1915–1922. doi: 10.1016/j.micinf.2005.12.028 16713724
5. Cummins ML, Roy Chowdhury P, Marenda MS, Browning GF, Djordjevic SP. Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate. Gales AC, editor. mSphere. 2019;4. doi: 10.1128/mSphere.00169-19 31118300
6. Hamidian M, Holt KE, Hall RM. Genomic resistance island AGI1 carrying a complex class 1 integron in a multiply antibiotic-resistant ST25 Acinetobacter baumannii isolate. J Antimicrob Chemother. 2015;70: 2519–2523. doi: 10.1093/jac/dkv137 26023211
7. Ahmed AM, Hussein AIA, Shimamoto T. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. J Antimicrob Chemother. 2006;59: 184–190. doi: 10.1093/jac/dkl471 17114173
8. Hall RM. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol. 2010;5: 1525–1538. doi: 10.2217/fmb.10.122 21073312
9. de Curraize C, Siebor E, Neuwirth C, Hall RM. SGI0, a relative of Salmonella genomic islands SGI1 and SGI2, lacking a class 1 integron, found in Proteus mirabilis. Plasmid. 2019; 102453. doi: 10.1016/j.plasmid.2019.102453 31705941
10. Doublet B, Boyd D, Mulvey MR, Cloeckaert A. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol. 2005;55: 1911–1924. doi: 10.1111/j.1365-2958.2005.04520.x 15752209
11. Douard G, Praud K, Cloeckaert A, Doublet B. The Salmonella genomic island 1 is specifically mobilized in trans by the IncA/C multidrug resistance plasmid family. PloS One. 2010;5: e15302. doi: 10.1371/journal.pone.0015302 21187963
12. Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother. 2018;73: 1121–1137. doi: 10.1093/jac/dkx488 29370371
13. Weill F-X, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358: 785–789. doi: 10.1126/science.aad5901 29123067
14. Ambrose SJ, Harmer CJ, Hall RM. Evolution and typing of IncC plasmids contributing to antibiotic resistance in Gram-negative bacteria. Plasmid. 2018;99: 40–55. doi: 10.1016/j.plasmid.2018.08.001 30081066
15. Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev. 2019;32: e00115–18. doi: 10.1128/CMR.00115-18 30700432
16. Arcari G, Di Lella FM, Bibbolino G, Mengoni F, Beccaccioli M, Antonelli G, et al. A Multispecies Cluster of VIM-1 Carbapenemase-Producing Enterobacterales Linked by a Novel, Highly Conjugative, and Broad-Host-Range IncA Plasmid Forebodes the Reemergence of VIM-1. Antimicrob Agents Chemother. 2020;64: e02435–19, /aac/64/4/AAC.02435-19.atom. doi: 10.1128/AAC.02435-19 32015041
17. Kiss J, Szabó M, Hegyi A, Douard G, Praud K, Nagy I, et al. Identification and Characterization of oriT and Two Mobilization Genes Required for Conjugative Transfer of Salmonella Genomic Island 1. Front Microbiol. 2019;10: 457. doi: 10.3389/fmicb.2019.00457 30894848
18. Carraro N, Durand R, Rivard N, Anquetil C, Barrette C, Humbert M, et al. Salmonella genomic island 1 (SGI1) reshapes the mating apparatus of IncC conjugative plasmids to promote self-propagation. PLOS Genet. 2017;13: e1006705. doi: 10.1371/journal.pgen.1006705 28355215
19. Humbert M, Huguet KT, Coulombe F, Burrus V. Entry Exclusion of Conjugative Plasmids of the IncA, IncC, and Related Untyped Incompatibility Groups. J Bacteriol. 2019;201. doi: 10.1128/JB.00731-18 30858294
20. Carraro N, Matteau D, Luo P, Rodrigue S, Burrus V. The master activator of IncA/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet. 2014;10: e1004714. doi: 10.1371/journal.pgen.1004714 25340549
21. Kiss J, Papp PP, Szabó M, Farkas T, Murányi G, Szakállas E, et al. The master regulator of IncA/C plasmids is recognized by the Salmonella Genomic island SGI1 as a signal for excision and conjugal transfer. Nucleic Acids Res. 2015;43: 8735–8745. doi: 10.1093/nar/gkv758 26209134
22. Kiss J, Nagy B, Olasz F. Stability, entrapment and variant formation of Salmonella genomic island 1. PloS One. 2012;7: e32497. doi: 10.1371/journal.pone.0032497 22384263
23. Huguet KT, Gonnet M, Doublet B, Cloeckaert A. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Sci Rep. 2016;6: 32285. doi: 10.1038/srep32285 27576575
24. Lindsey RL, Fedorka-Cray PJ, Frye JG, Meinersmann RJ. IncA/C Plasmids Are Prevalent in Multidrug-Resistant Salmonella enterica Isolates. Appl Environ Microbiol. 2009;75: 1908–1915. doi: 10.1128/AEM.02228-08 19181840
25. Ktari S, Le Hello S, Ksibi B, Courdavault L, Mnif B, Maalej S, et al. Carbapenemase-producing Salmonella enterica serotype Kentucky ST198, North Africa. J Antimicrob Chemother. 2015; dkv276. doi: 10.1093/jac/dkv276 26377865
26. Harmer CJ, Hamidian M, Ambrose SJ, Hall RM. Destabilization of IncA and IncC plasmids by SGI1 and SGI2 type Salmonella genomic islands. Plasmid. 2016;87–88: 51–57. doi: 10.1016/j.plasmid.2016.09.003 27620651
27. da Silva ACR, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 2002;417: 459–463. doi: 10.1038/417459a 12024217
28. Konieczny I, Bury K, Wawrzycka A, Wegrzyn K. Iteron Plasmids. Microbiol Spectr. 2014;2. doi: 10.1128/microbiolspec.PLAS-0026-2014 26104462
29. Johnson SL, Khiani A, Bishop-Lilly KA, Chapman C, Patel M, Verratti K, et al. Complete Genome Assemblies for Two Single-Chromosome Vibrio cholerae Isolates, Strains 1154–74 (Serogroup O49) and 10432–62 (Serogroup O27). Genome Announc. 2015;3: e00462–15. doi: 10.1128/genomeA.00462-15 25977434
30. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37: W202–208. doi: 10.1093/nar/gkp335 19458158
31. Girlich D, Dortet L, Poirel L, Nordmann P. Integration of the blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL) in a Proteus mirabilis clinical isolate. J Antimicrob Chemother. 2015;70: 98–102. doi: 10.1093/jac/dku371 25239462
32. Carattoli A. Plasmids in Gram negatives: molecular typing of resistance plasmids. Int J Med Microbiol IJMM. 2011;301: 654–658. doi: 10.1016/j.ijmm.2011.09.003 21992746
33. Sarkar A, Pazhani GP, Chowdhury G, Ghosh A, Ramamurthy T. Attributes of carbapenemase encoding conjugative plasmid pNDM-SAL from an extensively drug-resistant Salmonella enterica Serovar Senftenberg. Front Microbiol. 2015;6: 969. doi: 10.3389/fmicb.2015.00969 26441902
34. Ebner P, Garner K, Mathew A. Class 1 integrons in various Salmonella enterica serovars isolated from animals and identification of genomic island SGI1 in Salmonella enterica var. Meleagridis. J Antimicrob Chemother. 2004;53: 1004–1009. doi: 10.1093/jac/dkh192 15117931
35. Murányi G, Szabó M, Olasz F, Kiss J. Determination and Analysis of the Putative AcaCD-Responsive Promoters of Salmonella Genomic Island 1. PloS One. 2016;11: e0164561. doi: 10.1371/journal.pone.0164561 27727307
36. Poulin-Laprade D, Carraro N, Burrus V. The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids. Front Microbiol. 2015;6: 837. doi: 10.3389/fmicb.2015.00837 26347724
37. Kunnimalaiyaan S, Inman RB, Rakowski SA, Filutowicz M. Role of pi dimers in coupling (“handcuffing”) of plasmid R6K’s gamma ori iterons. J Bacteriol. 2005;187: 3779–3785. doi: 10.1128/JB.187.11.3779-3785.2005 15901701
38. Harmer CJ, Hall RM. The A to Z of A/C plasmids. Plasmid. 2015;80: 63–82. doi: 10.1016/j.plasmid.2015.04.003 25910948
39. Llanes C, Gabant P, Couturier M, Bayer L, Plesiat P. Molecular analysis of the replication elements of the broad-host-range RepA/C replicon. Plasmid. 1996;36: 26–35. doi: 10.1006/plas.1996.0028 8938049
40. Hancock SJ, Phan M-D, Peters KM, Forde BM, Chong TM, Yin W-F, et al. Identification of IncA/C Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence Typing Scheme. Antimicrob Agents Chemother. 2017;61: e01740–16. doi: 10.1128/AAC.01740-16 27872077
41. Carraro N, Poulin D, Burrus V. Replication and Active Partition of Integrative and Conjugative Elements (ICEs) of the SXT/R391 Family: The Line between ICEs and Conjugative Plasmids Is Getting Thinner. PLoS Genet. 2015;11: e1005298. doi: 10.1371/journal.pgen.1005298 26061412
42. Carraro N, Libante V, Charron-Bourgoin F, Guédon G, Morel C, Leblond P. Plasmid-like replication of a minimal streptococcal integrative and conjugative element. Microbiology. 2016;162: 622–632. doi: 10.1099/mic.0.000219 26825653
43. Wright LD, Grossman AD. Autonomous Replication of the Conjugative Transposon Tn916. J Bacteriol. 2016;198: 3355–3366. doi: 10.1128/JB.00639-16 27698087
44. Lee CA, Babic A, Grossman AD. Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol. 2010;75: 268–279. doi: 10.1111/j.1365-2958.2009.06985.x 19943900
45. Delavat F, Moritz R, van der Meer JR. Transient Replication in Specialized Cells Favors Transfer of an Integrative and Conjugative Element. mBio. 2019;10. doi: 10.1128/mBio.01133-19 31186329
46. Sezonov G, Duchêne AM, Friedmann A, Guérineau M, Pernodet JL. Replicase, excisionase, and integrase genes of the Streptomyces element pSAM2 constitute an operon positively regulated by the pra gene. J Bacteriol. 1998;180: 3056–3061. doi: 10.1128/JB.180.12.3056-3061.1998 9620953
47. Ghinet MG, Bordeleau E, Beaudin J, Brzezinski R, Roy S, Burrus V. Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PloS One. 2011;6: e27846. doi: 10.1371/journal.pone.0027846 22114709
48. te Poele EM, Bolhuis H, Dijkhuizen L. Actinomycete integrative and conjugative elements. Antonie Van Leeuwenhoek. 2008;94: 127–143. doi: 10.1007/s10482-008-9255-x 18523858
49. Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen J, Davies R, Penadés JR. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J. 2018;12: 2114–2128. doi: 10.1038/s41396-018-0156-3 29875435
50. Wright LD, Johnson CM, Grossman AD. Identification of a Single Strand Origin of Replication in the Integrative and Conjugative Element ICEBs1 of Bacillus subtilis. PLoS Genet. 2015;11: e1005556. doi: 10.1371/journal.pgen.1005556 26440206
51. Carraro N, Rivard N, Ceccarelli D, Colwell RR, Burrus V. IncA/C conjugative plasmids mobilize a new family of multidrug resistance islands in clinical Vibrio cholerae non-O1/non-O139 isolates from Haiti. mBio. 2016;7: pii: e00509–16. doi: 10.1128/mBio.00509-16 27435459
52. Carraro N, Matteau D, Burrus V, Rodrigue S. Unraveling the regulatory network of IncA/C plasmid mobilization: When genomic islands hijack conjugative elements. Mob Genet Elem. 2015;5: 1–5. doi: 10.1080/2159256X.2015.1045116 26442183
53. Carraro N, Rivard N, Burrus V, Ceccarelli D. Mobilizable genomic islands, different strategies for the dissemination of multidrug resistance and other adaptive traits. Mob Genet Elem. 2017;7: 1–6. doi: 10.1080/2159256X.2017.1304193 28439449
54. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97: 6640–6645. doi: 10.1073/pnas.120163297 10829079
55. Carraro N, Sauvé M, Matteau D, Lauzon G, Rodrigue S, Burrus V. Development of pVCR94ΔX from Vibrio cholerae, a prototype for studying multidrug resistant IncA/C conjugative plasmids. Front Microbiol. 2014;5: 44. doi: 10.3389/fmicb.2014.00044 24567731
56. Garriss G, Waldor MK, Burrus V. Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet. 2009;5: e1000775. doi: 10.1371/journal.pgen.1000775 20019796
57. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177: 4121–4130. doi: 10.1128/jb.177.14.4121-4130.1995 7608087
58. Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988;16: 6127–6145. doi: 10.1093/nar/16.13.6127 3041370
59. Datta S, Costantino N, Court DL. A set of recombineering plasmids for gram-negative bacteria. Gene. 2006;379: 109–115. doi: 10.1016/j.gene.2006.04.018 16750601
60. Garriss G, Poulin-Laprade D, Burrus V. DNA-damaging agents induce the RecA-independent homologous recombination functions of integrating conjugative elements of the SXT/R391 family. J Bacteriol. 2013;195: 1991–2003. doi: 10.1128/JB.02090-12 23435980
61. Miller JH. A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1992.
62. Noé L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33: W540–543. doi: 10.1093/nar/gki478 15980530
63. Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinforma Oxf Engl. 1998;14: 48–54. doi: 10.1093/bioinformatics/14.1.48 9520501
64. Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011;8: 11–13. doi: 10.4161/rna.8.1.13346 21282983
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans