-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaNatural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model
Autoři: Huimin Na aff001; Stefan Zdraljevic aff002; Robyn E. Tanny aff002; Albertha J. M. Walhout aff001; Erik C. Andersen aff002
Působiště autorů: Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America aff001; Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America aff002
Vyšlo v časopise: Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008984
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008984Souhrn
Mutations in human metabolic genes can lead to rare diseases known as inborn errors of human metabolism. For instance, patients with loss-of-function mutations in either subunit of propionyl-CoA carboxylase suffer from propionic acidemia because they cannot catabolize propionate, leading to its harmful accumulation. Both the penetrance and expressivity of metabolic disorders can be modulated by genetic background. However, modifiers of these diseases are difficult to identify because of the lack of statistical power for rare diseases in human genetics. Here, we use a model of propionic acidemia in the nematode Caenorhabditis elegans to identify genetic modifiers of propionate sensitivity. Using genome-wide association (GWA) mapping across wild strains, we identify several genomic regions correlated with reduced propionate sensitivity. We find that natural variation in the putative glucuronosyltransferase GLCT-3, a homolog of human B3GAT, partly explains differences in propionate sensitivity in one of these genomic intervals. We demonstrate that loss-of-function alleles in glct-3 render the animals less sensitive to propionate. Additionally, we find that C. elegans has an expansion of the glct gene family, suggesting that the number of members of this family could influence sensitivity to excess propionate. Our findings demonstrate that natural variation in genes that are not directly associated with propionate breakdown can modulate propionate sensitivity. Our study provides a framework for using C. elegans to characterize the contributions of genetic background in models of human inborn errors in metabolism.
Klíčová slova:
Caenorhabditis elegans – Genome-wide association studies – Genomics – Heredity – Chromosome mapping – Propionates – Quantitative trait loci – Inborn errors of metabolism
Zdroje
1. Argmann CA, Houten SM, Zhu J, Schadt EE. A Next Generation Multiscale View of Inborn Errors of Metabolism. Cell Metab. 2016;23(1):13–26. doi: 10.1016/j.cmet.2015.11.012 26712461; PubMed Central PMCID: PMC4715559.
2. Saudubray JM, Garcia-Cazorla A. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr Clin North Am. 2018;65(2):179–208. Epub 2018/03/06. doi: 10.1016/j.pcl.2017.11.002 29502909.
3. Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C. Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet. 2006;142C(2):104–12. doi: 10.1002/ajmg.c.30090 16602092.
4. Banerjee R, Ragsdale SW. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem. 2003;72 : 209–47. Epub 2003/10/07. doi: 10.1146/annurev.biochem.72.121801.161828 14527323.
5. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–49. doi: 10.3390/nu7042839 25875123; PubMed Central PMCID: PMC4425176.
6. Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition reviews. 2011;69(5):245–58. Epub 2011/04/28. doi: 10.1111/j.1753-4887.2011.00388.x 21521227.
7. Matsumoto I, Kuhara T. A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry—rapid, practical, and simultaneous urinary metabolites analysis. Mass Spectrometry Reviews. 1996;15 : 43–57. doi: 10.1002/(SICI)1098-2787(1996)15 : 1<43::AID-MAS3>3.0.CO;2-B 27082169
8. Frezal L, Felix MA. C. elegans outside the Petri dish. Elife. 2015;4. doi: 10.7554/eLife.05849 25822066; PubMed Central PMCID: PMC4373675.
9. Felix MA, Braendle C. The natural history of Caenorhabditis elegans. Curr Biol. 2010;20(22):R965–9. doi: 10.1016/j.cub.2010.09.050 21093785.
10. Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, et al. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. Elife. 2019;8. Epub 2019/12/04. doi: 10.7554/eLife.50465 31793880; PubMed Central PMCID: PMC6927746.
11. MacNeil LT, Walhout AJM. Food, pathogen, signal: The multifaceted nature of a bacterial diet. Worm. 2013;2:e26454. doi: 10.4161/worm.26454 24744980
12. Yilmaz LS, Walhout AJM. Worms, bacteria and micronutrients: an elegant model of our diet. Trends Genet. 2014;30 : 496–503. doi: 10.1016/j.tig.2014.07.010 25172020
13. Watson E, MacNeil LT, Arda HE, Zhu LJ, Walhout AJM. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell. 2013;153 : 253–66. doi: 10.1016/j.cell.2013.02.050 23540702
14. Watson E, MacNeil LT, Ritter AD, Yilmaz LS, Rosebrock AP, Caudy AA, et al. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell. 2014;156 : 759–70. doi: 10.1016/j.cell.2014.01.047 24529378
15. Watson E, Olin-Sandoval V, Hoy MJ, Li C-H, Louisse T, Yao V, et al. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans. Elife. 2016;5:pii: e17670. doi: 10.7554/eLife.17670 27383050
16. Bulcha JT, Giese GE, Ali MZ, Lee Y-U, Walker M, Holdorf AD, et al. A persistence detector for metabolic network rewiring in an animal. Cell Rep. 2019;26 : 460–8. doi: 10.1016/j.celrep.2018.12.064 30625328
17. Sterken MG, Snoek LB, Kammenga JE, Andersen EC. The laboratory domestication of Caenorhabditis elegans. Trends Genet. 2015;31(5):224–31. Epub 2015/03/26. doi: 10.1016/j.tig.2015.02.009 25804345; PubMed Central PMCID: PMC4417040.
18. Rockman MV, Kruglyak L. Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet. 2009;5(3):e1000419. Epub 2009/03/14. doi: 10.1371/journal.pgen.1000419 19283065; PubMed Central PMCID: PMC2652117.
19. Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet. 2012;44(3):285–90. doi: 10.1038/ng.1050 22286215; PubMed Central PMCID: PMC3365839.
20. Barriere A, Felix MA. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol. 2005;15(13):1176–84. Epub 2005/07/12. doi: 10.1016/j.cub.2005.06.022 16005289.
21. Barriere A, Felix MA. Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics. 2007;176(2):999–1011. Epub 2007/04/06. doi: 10.1534/genetics.106.067223 17409084; PubMed Central PMCID: PMC1894625.
22. Dolgin ES, Felix MA, Cutter AD. Hakuna Nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity (Edinb). 2008;100(3):304–15. Epub 2007/12/13. doi: 10.1038/sj.hdy.6801079 18073782.
23. Petersen C, Saebelfeld M, Barbosa C, Pees B, Hermann RJ, Schalkowski R, et al. Ten years of life in compost: temporal and spatial variation of North German Caenorhabditis elegans populations. Ecol Evol. 2015;5(16):3250–63. Epub 2015/09/19. doi: 10.1002/ece3.1605 26380661; PubMed Central PMCID: PMC4569023.
24. Reddy KC, Andersen EC, Kruglyak L, Kim DH. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science. 2009;323(5912):382–4. doi: 10.1126/science.1166527 19150845; PubMed Central PMCID: PMC2748219.
25. Ghosh R, Andersen EC, Shapiro JA, Gerke JP, Kruglyak L. Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science. 2012;335(6068):574–8. doi: 10.1126/science.1214318 22301316; PubMed Central PMCID: PMC3273849.
26. Zdraljevic S, Strand C, Seidel HS, Cook DE, Doench JG, Andersen EC. Natural variation in a single amino acid substitution underlies physiological responses to topoisomerase II poisons. PLoS Genet. 2017;13(7):e1006891. Epub 2017/07/13. doi: 10.1371/journal.pgen.1006891 28700616; PubMed Central PMCID: PMC5529024.
27. Brady SC, Zdraljevic S, Bisaga KW, Tanny RE, Cook DE, Lee D, et al. A Novel Gene Underlies Bleomycin-Response Variation in Caenorhabditis elegans. Genetics. 2019;212(4):1453–68. Epub 2019/06/07. doi: 10.1534/genetics.119.302286 31171655; PubMed Central PMCID: PMC6707474.
28. Greene JS, Brown M, Dobosiewicz M, Ishida IG, Macosko EZ, Zhang X, et al. Balancing selection shapes density-dependent foraging behaviour. Nature. 2016;539(7628):254–8. doi: 10.1038/nature19848 27799655; PubMed Central PMCID: PMC5161598.
29. Burga A, Ben-David E, Lemus Vergara T, Boocock J, Kruglyak L. Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk. Nat Commun. 2019;10(1):2680. Epub 2019/06/20. doi: 10.1038/s41467-019-10636-9 31213597; PubMed Central PMCID: PMC6582151.
30. Gao AW, Sterken MG, Uit de Bos J, van Creij J, Kamble R, Snoek BL, et al. Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res. 2018;28(9):1296–308. Epub 2018/08/16. doi: 10.1101/gr.232322.117 30108180; PubMed Central PMCID: PMC6120624.
31. Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017;45(D1):D650–D7. doi: 10.1093/nar/gkw893 27701074; PubMed Central PMCID: PMC5210618.
32. Jones KL, Schwarze U, Adam MP, Byers PH, Mefford HC. A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes. Am J Med Genet A. 2015;167A(11):2691–6. Epub 2015/06/19. doi: 10.1002/ajmg.a.37209 26086840; PubMed Central PMCID: PMC4654953.
33. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32. Epub 2013/03/19. doi: 10.1016/j.biocel.2013.02.019 23500526.
34. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89(1):82–93. Epub 2011/07/09. doi: 10.1016/j.ajhg.2011.05.029 21737059; PubMed Central PMCID: PMC3135811.
35. Seidel HS, Rockman MV, Kruglyak L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science. 2008;319(5863):589–94. Epub 2008/01/12. doi: 10.1126/science.1151107 18187622; PubMed Central PMCID: PMC2421010.
36. Ben-David E, Burga A, Kruglyak L. A maternal-effect selfish genetic element in Caenorhabditis elegans. Science. 2017;356(6342):1051–5. Epub 2017/05/13. doi: 10.1126/science.aan0621 28495877; PubMed Central PMCID: PMC6251971.
37. Kim H, Ishidate T, Ghanta KS, Seth M, Conte D Jr., Shirayama M, et al. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics. 2014;197(4):1069–80. doi: 10.1534/genetics.114.166389 24879462; PubMed Central PMCID: PMC4125384.
38. Lee D, Zdraljevic S, Cook DE, Frezal L, Hsu JC, Sterken MG, et al. Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol. 2019;3(10):1455–63. Epub 2019/09/25. doi: 10.1038/s41559-019-0982-3 31548647; PubMed Central PMCID: PMC6764921.
39. Thomas JH. Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res. 2006;16(8):1017–30. Epub 2006/07/11. doi: 10.1101/gr.5089806 16825662; PubMed Central PMCID: PMC1524861.
40. Thomas JH, Robertson HM. The Caenorhabditis chemoreceptor gene families. BMC Biol. 2008;6 : 42. Epub 2008/10/08. doi: 10.1186/1741-7007-6-42 18837995; PubMed Central PMCID: PMC2576165.
41. Stevens L, Felix MA, Beltran T, Braendle C, Caurcel C, Fausett S, et al. Comparative genomics of 10 new Caenorhabditis species. Evol Lett. 2019;3(2):217–36. Epub 2019/04/23. doi: 10.1002/evl3.110 31007946; PubMed Central PMCID: PMC6457397.
42. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):103–16. Epub 2010/07/30. doi: 10.5507/bp.2010.017 20668491.
43. Zdraljevic S, Fox BW, Strand C, Panda O, Tenjo FJ, Brady SC, et al. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. Elife. 2019;8. Epub 2019/04/09. doi: 10.7554/eLife.40260 30958264; PubMed Central PMCID: PMC6453569.
44. Browning BL, Browning SR. Detecting identity by descent and estimating genotype error rates in sequence data. Am J Hum Genet. 2013;93(5):840–51. Epub 2013/11/12. doi: 10.1016/j.ajhg.2013.09.014 24207118; PubMed Central PMCID: PMC3824133.
45. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93. Epub 2011/09/10. doi: 10.1093/bioinformatics/btr509 21903627; PubMed Central PMCID: PMC3198575.
46. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4 : 7. Epub 2015/02/28. doi: 10.1186/s13742-015-0047-8 25722852; PubMed Central PMCID: PMC4342193.
47. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. Epub 2007/08/19. doi: 10.1086/519795 17701901; PubMed Central PMCID: PMC1950838.
48. Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. The plant genome. 2011;4 : 250–5.
49. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 2005;95(3):221–7. Epub 2005/08/04. doi: 10.1038/sj.hdy.6800717 16077740.
50. Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32(9):1423–6. Epub 2016/05/08. doi: 10.1093/bioinformatics/btw079 27153000; PubMed Central PMCID: PMC4848408.
51. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10 : 421. Epub 2009/12/17. doi: 10.1186/1471-2105-10-421 20003500; PubMed Central PMCID: PMC2803857.
52. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5 : 113. Epub 2004/08/21. doi: 10.1186/1471-2105-5-113 15318951; PubMed Central PMCID: PMC517706.
53. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. Epub 2014/01/24. doi: 10.1093/bioinformatics/btu033 24451623; PubMed Central PMCID: PMC3998144.
54. Muller T, Vingron M. Modeling amino acid replacement. J Comput Biol. 2000;7(6):761–76. Epub 2001/05/31. doi: 10.1089/10665270050514918 11382360.
55. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W9. Epub 2019/04/02. doi: 10.1093/nar/gkz239 30931475; PubMed Central PMCID: PMC6602468.
56. Yu G, Lam TT, Zhu H, Guan Y. Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using Ggtree. Mol Biol Evol. 2018;35(12):3041–3. Epub 2018/10/24. doi: 10.1093/molbev/msy194 30351396; PubMed Central PMCID: PMC6278858.
57. Covarrubias-Pazaran G. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS One. 2016;11: e0156744. doi: 10.1371/journal.pone.0156744 27271781
Článek Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeastČlánek Costly GenesČlánek A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer proteinČlánek A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individualsČlánek The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 8- Co dokáže ultrazvuková přilba pro neinvazivní stimulaci mozku
- 4× telegraficky z oblasti kardiovaskulární prevence – „jednohubky“ z klinického výzkumu 2026/3
- Infekce močových cest u dospělých – mezery v současných guidelines a doporučení pro klinickou praxi
- Jak může AI rozborem jazyka pomoci psychologům?
- S prof. Vladimírem Paličkou o racionální suplementaci kalcia a vitaminu D v každodenní praxi
-
Všechny články tohoto čísla
- Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans
- Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast
- Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca
- Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- Transcriptional regulators of the Golli/myelin basic protein locus integrate additive and stealth activities
- Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics
- DAnkrd49 and Bdbt act via Casein kinase Iε to regulate planar polarity in Drosophila
- Costly Genes
- Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences
- Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph
- Learning the properties of adaptive regions with functional data analysis
- Epistatic interactions between killer immunoglobulin-like receptors and human leukocyte antigen ligands are associated with ankylosing spondylitis
- Endogenization and excision of human herpesvirus 6 in human genomes
- A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli
- On the cross-population generalizability of gene expression prediction models
- How many familial relationship testing results could be wrong?
- Long noncoding RNA functionality in imprinted domain regulation
- Horizontal transmission and recombination maintain forever young bacterial symbiont genomes
- A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
- Drosophila miR-87 promotes dendrite regeneration by targeting the transcriptional repressor Tramtrack69
- A general framework for functionally informed set-based analysis: Application to a large-scale colorectal cancer study
- THOC1 deficiency leads to late-onset nonsyndromic hearing loss through p53-mediated hair cell apoptosis
- Cfap97d1 is important for flagellar axoneme maintenance and male mouse fertility
- Disruption of the ERLIN–TM6SF2–APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease
- Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing
- Mushroom body subsets encode CREB2-dependent water-reward long-term memory in Drosophila
- Replication of the Salmonella Genomic Island 1 (SGI1) triggered by helper IncC conjugative plasmids promotes incompatibility and plasmid loss
- Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane
- Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development
- Genomic imprinting: An epigenetic regulatory system
- Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins
- Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system
- Systematic identification of functional SNPs interrupting 3’UTR polyadenylation signals
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension
- Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model
- The roles of replication-transcription conflict in mutagenesis and evolution of genome organization
- Distinct and sequential re-replication barriers ensure precise genome duplication
- Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2
- Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA
- Cryptic genetic variation enhances primate L1 retrotransposon survival by enlarging the functional coiled coil sequence space of ORF1p
- Quorum sensing sets the stage for the establishment and vertical transmission of Sodalis praecaptivus in tsetse flies
- Pan-genomic open reading frames: A potential supplement of single nucleotide polymorphisms in estimation of heritability and genomic prediction
- The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi
- Serotonergic modulation of visual neurons in Drosophila melanogaster
- Functional information from clinically-derived drug resistant forms of the Candida glabrata Pdr1 transcription factor
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Genomic imprinting: An epigenetic regulatory system
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání