Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model


Autoři: Huimin Na aff001;  Stefan Zdraljevic aff002;  Robyn E. Tanny aff002;  Albertha J. M. Walhout aff001;  Erik C. Andersen aff002
Působiště autorů: Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America aff001;  Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America aff002
Vyšlo v časopise: Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008984
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008984

Souhrn

Mutations in human metabolic genes can lead to rare diseases known as inborn errors of human metabolism. For instance, patients with loss-of-function mutations in either subunit of propionyl-CoA carboxylase suffer from propionic acidemia because they cannot catabolize propionate, leading to its harmful accumulation. Both the penetrance and expressivity of metabolic disorders can be modulated by genetic background. However, modifiers of these diseases are difficult to identify because of the lack of statistical power for rare diseases in human genetics. Here, we use a model of propionic acidemia in the nematode Caenorhabditis elegans to identify genetic modifiers of propionate sensitivity. Using genome-wide association (GWA) mapping across wild strains, we identify several genomic regions correlated with reduced propionate sensitivity. We find that natural variation in the putative glucuronosyltransferase GLCT-3, a homolog of human B3GAT, partly explains differences in propionate sensitivity in one of these genomic intervals. We demonstrate that loss-of-function alleles in glct-3 render the animals less sensitive to propionate. Additionally, we find that C. elegans has an expansion of the glct gene family, suggesting that the number of members of this family could influence sensitivity to excess propionate. Our findings demonstrate that natural variation in genes that are not directly associated with propionate breakdown can modulate propionate sensitivity. Our study provides a framework for using C. elegans to characterize the contributions of genetic background in models of human inborn errors in metabolism.

Klíčová slova:

Caenorhabditis elegans – Genome-wide association studies – Genomics – Heredity – Chromosome mapping – Propionates – Quantitative trait loci – Inborn errors of metabolism


Zdroje

1. Argmann CA, Houten SM, Zhu J, Schadt EE. A Next Generation Multiscale View of Inborn Errors of Metabolism. Cell Metab. 2016;23(1):13–26. doi: 10.1016/j.cmet.2015.11.012 26712461; PubMed Central PMCID: PMC4715559.

2. Saudubray JM, Garcia-Cazorla A. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr Clin North Am. 2018;65(2):179–208. Epub 2018/03/06. doi: 10.1016/j.pcl.2017.11.002 29502909.

3. Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C. Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet. 2006;142C(2):104–12. doi: 10.1002/ajmg.c.30090 16602092.

4. Banerjee R, Ragsdale SW. The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem. 2003;72:209–47. Epub 2003/10/07. doi: 10.1146/annurev.biochem.72.121801.161828 14527323.

5. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–49. doi: 10.3390/nu7042839 25875123; PubMed Central PMCID: PMC4425176.

6. Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutrition reviews. 2011;69(5):245–58. Epub 2011/04/28. doi: 10.1111/j.1753-4887.2011.00388.x 21521227.

7. Matsumoto I, Kuhara T. A new chemical diagnostic method for inborn errors of metabolism by mass spectrometry—rapid, practical, and simultaneous urinary metabolites analysis. Mass Spectrometry Reviews. 1996;15:43–57. doi: 10.1002/(SICI)1098-2787(1996)15:1<43::AID-MAS3>3.0.CO;2-B 27082169

8. Frezal L, Felix MA. C. elegans outside the Petri dish. Elife. 2015;4. doi: 10.7554/eLife.05849 25822066; PubMed Central PMCID: PMC4373675.

9. Felix MA, Braendle C. The natural history of Caenorhabditis elegans. Curr Biol. 2010;20(22):R965–9. doi: 10.1016/j.cub.2010.09.050 21093785.

10. Crombie TA, Zdraljevic S, Cook DE, Tanny RE, Brady SC, Wang Y, et al. Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. Elife. 2019;8. Epub 2019/12/04. doi: 10.7554/eLife.50465 31793880; PubMed Central PMCID: PMC6927746.

11. MacNeil LT, Walhout AJM. Food, pathogen, signal: The multifaceted nature of a bacterial diet. Worm. 2013;2:e26454. doi: 10.4161/worm.26454 24744980

12. Yilmaz LS, Walhout AJM. Worms, bacteria and micronutrients: an elegant model of our diet. Trends Genet. 2014;30:496–503. doi: 10.1016/j.tig.2014.07.010 25172020

13. Watson E, MacNeil LT, Arda HE, Zhu LJ, Walhout AJM. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell. 2013;153:253–66. doi: 10.1016/j.cell.2013.02.050 23540702

14. Watson E, MacNeil LT, Ritter AD, Yilmaz LS, Rosebrock AP, Caudy AA, et al. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell. 2014;156:759–70. doi: 10.1016/j.cell.2014.01.047 24529378

15. Watson E, Olin-Sandoval V, Hoy MJ, Li C-H, Louisse T, Yao V, et al. Metabolic network rewiring of propionate flux compensates vitamin B12 deficiency in C. elegans. Elife. 2016;5:pii: e17670. doi: 10.7554/eLife.17670 27383050

16. Bulcha JT, Giese GE, Ali MZ, Lee Y-U, Walker M, Holdorf AD, et al. A persistence detector for metabolic network rewiring in an animal. Cell Rep. 2019;26:460–8. doi: 10.1016/j.celrep.2018.12.064 30625328

17. Sterken MG, Snoek LB, Kammenga JE, Andersen EC. The laboratory domestication of Caenorhabditis elegans. Trends Genet. 2015;31(5):224–31. Epub 2015/03/26. doi: 10.1016/j.tig.2015.02.009 25804345; PubMed Central PMCID: PMC4417040.

18. Rockman MV, Kruglyak L. Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet. 2009;5(3):e1000419. Epub 2009/03/14. doi: 10.1371/journal.pgen.1000419 19283065; PubMed Central PMCID: PMC2652117.

19. Andersen EC, Gerke JP, Shapiro JA, Crissman JR, Ghosh R, Bloom JS, et al. Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nat Genet. 2012;44(3):285–90. doi: 10.1038/ng.1050 22286215; PubMed Central PMCID: PMC3365839.

20. Barriere A, Felix MA. High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol. 2005;15(13):1176–84. Epub 2005/07/12. doi: 10.1016/j.cub.2005.06.022 16005289.

21. Barriere A, Felix MA. Temporal dynamics and linkage disequilibrium in natural Caenorhabditis elegans populations. Genetics. 2007;176(2):999–1011. Epub 2007/04/06. doi: 10.1534/genetics.106.067223 17409084; PubMed Central PMCID: PMC1894625.

22. Dolgin ES, Felix MA, Cutter AD. Hakuna Nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity (Edinb). 2008;100(3):304–15. Epub 2007/12/13. doi: 10.1038/sj.hdy.6801079 18073782.

23. Petersen C, Saebelfeld M, Barbosa C, Pees B, Hermann RJ, Schalkowski R, et al. Ten years of life in compost: temporal and spatial variation of North German Caenorhabditis elegans populations. Ecol Evol. 2015;5(16):3250–63. Epub 2015/09/19. doi: 10.1002/ece3.1605 26380661; PubMed Central PMCID: PMC4569023.

24. Reddy KC, Andersen EC, Kruglyak L, Kim DH. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science. 2009;323(5912):382–4. doi: 10.1126/science.1166527 19150845; PubMed Central PMCID: PMC2748219.

25. Ghosh R, Andersen EC, Shapiro JA, Gerke JP, Kruglyak L. Natural variation in a chloride channel subunit confers avermectin resistance in C. elegans. Science. 2012;335(6068):574–8. doi: 10.1126/science.1214318 22301316; PubMed Central PMCID: PMC3273849.

26. Zdraljevic S, Strand C, Seidel HS, Cook DE, Doench JG, Andersen EC. Natural variation in a single amino acid substitution underlies physiological responses to topoisomerase II poisons. PLoS Genet. 2017;13(7):e1006891. Epub 2017/07/13. doi: 10.1371/journal.pgen.1006891 28700616; PubMed Central PMCID: PMC5529024.

27. Brady SC, Zdraljevic S, Bisaga KW, Tanny RE, Cook DE, Lee D, et al. A Novel Gene Underlies Bleomycin-Response Variation in Caenorhabditis elegans. Genetics. 2019;212(4):1453–68. Epub 2019/06/07. doi: 10.1534/genetics.119.302286 31171655; PubMed Central PMCID: PMC6707474.

28. Greene JS, Brown M, Dobosiewicz M, Ishida IG, Macosko EZ, Zhang X, et al. Balancing selection shapes density-dependent foraging behaviour. Nature. 2016;539(7628):254–8. doi: 10.1038/nature19848 27799655; PubMed Central PMCID: PMC5161598.

29. Burga A, Ben-David E, Lemus Vergara T, Boocock J, Kruglyak L. Fast genetic mapping of complex traits in C. elegans using millions of individuals in bulk. Nat Commun. 2019;10(1):2680. Epub 2019/06/20. doi: 10.1038/s41467-019-10636-9 31213597; PubMed Central PMCID: PMC6582151.

30. Gao AW, Sterken MG, Uit de Bos J, van Creij J, Kamble R, Snoek BL, et al. Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res. 2018;28(9):1296–308. Epub 2018/08/16. doi: 10.1101/gr.232322.117 30108180; PubMed Central PMCID: PMC6120624.

31. Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017;45(D1):D650–D7. doi: 10.1093/nar/gkw893 27701074; PubMed Central PMCID: PMC5210618.

32. Jones KL, Schwarze U, Adam MP, Byers PH, Mefford HC. A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes. Am J Med Genet A. 2015;167A(11):2691–6. Epub 2015/06/19. doi: 10.1002/ajmg.a.37209 26086840; PubMed Central PMCID: PMC4654953.

33. Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol. 2013;45(6):1121–32. Epub 2013/03/19. doi: 10.1016/j.biocel.2013.02.019 23500526.

34. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89(1):82–93. Epub 2011/07/09. doi: 10.1016/j.ajhg.2011.05.029 21737059; PubMed Central PMCID: PMC3135811.

35. Seidel HS, Rockman MV, Kruglyak L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science. 2008;319(5863):589–94. Epub 2008/01/12. doi: 10.1126/science.1151107 18187622; PubMed Central PMCID: PMC2421010.

36. Ben-David E, Burga A, Kruglyak L. A maternal-effect selfish genetic element in Caenorhabditis elegans. Science. 2017;356(6342):1051–5. Epub 2017/05/13. doi: 10.1126/science.aan0621 28495877; PubMed Central PMCID: PMC6251971.

37. Kim H, Ishidate T, Ghanta KS, Seth M, Conte D Jr., Shirayama M, et al. A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans. Genetics. 2014;197(4):1069–80. doi: 10.1534/genetics.114.166389 24879462; PubMed Central PMCID: PMC4125384.

38. Lee D, Zdraljevic S, Cook DE, Frezal L, Hsu JC, Sterken MG, et al. Selection and gene flow shape niche-associated variation in pheromone response. Nat Ecol Evol. 2019;3(10):1455–63. Epub 2019/09/25. doi: 10.1038/s41559-019-0982-3 31548647; PubMed Central PMCID: PMC6764921.

39. Thomas JH. Adaptive evolution in two large families of ubiquitin-ligase adapters in nematodes and plants. Genome Res. 2006;16(8):1017–30. Epub 2006/07/11. doi: 10.1101/gr.5089806 16825662; PubMed Central PMCID: PMC1524861.

40. Thomas JH, Robertson HM. The Caenorhabditis chemoreceptor gene families. BMC Biol. 2008;6:42. Epub 2008/10/08. doi: 10.1186/1741-7007-6-42 18837995; PubMed Central PMCID: PMC2576165.

41. Stevens L, Felix MA, Beltran T, Braendle C, Caurcel C, Fausett S, et al. Comparative genomics of 10 new Caenorhabditis species. Evol Lett. 2019;3(2):217–36. Epub 2019/04/23. doi: 10.1002/evl3.110 31007946; PubMed Central PMCID: PMC6457397.

42. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):103–16. Epub 2010/07/30. doi: 10.5507/bp.2010.017 20668491.

43. Zdraljevic S, Fox BW, Strand C, Panda O, Tenjo FJ, Brady SC, et al. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. Elife. 2019;8. Epub 2019/04/09. doi: 10.7554/eLife.40260 30958264; PubMed Central PMCID: PMC6453569.

44. Browning BL, Browning SR. Detecting identity by descent and estimating genotype error rates in sequence data. Am J Hum Genet. 2013;93(5):840–51. Epub 2013/11/12. doi: 10.1016/j.ajhg.2013.09.014 24207118; PubMed Central PMCID: PMC3824133.

45. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93. Epub 2011/09/10. doi: 10.1093/bioinformatics/btr509 21903627; PubMed Central PMCID: PMC3198575.

46. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. Epub 2015/02/28. doi: 10.1186/s13742-015-0047-8 25722852; PubMed Central PMCID: PMC4342193.

47. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. Epub 2007/08/19. doi: 10.1086/519795 17701901; PubMed Central PMCID: PMC1950838.

48. Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. The plant genome. 2011;4:250–5.

49. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 2005;95(3):221–7. Epub 2005/08/04. doi: 10.1038/sj.hdy.6800717 16077740.

50. Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics. 2016;32(9):1423–6. Epub 2016/05/08. doi: 10.1093/bioinformatics/btw079 27153000; PubMed Central PMCID: PMC4848408.

51. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. Epub 2009/12/17. doi: 10.1186/1471-2105-10-421 20003500; PubMed Central PMCID: PMC2803857.

52. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. Epub 2004/08/21. doi: 10.1186/1471-2105-5-113 15318951; PubMed Central PMCID: PMC517706.

53. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. Epub 2014/01/24. doi: 10.1093/bioinformatics/btu033 24451623; PubMed Central PMCID: PMC3998144.

54. Muller T, Vingron M. Modeling amino acid replacement. J Comput Biol. 2000;7(6):761–76. Epub 2001/05/31. doi: 10.1089/10665270050514918 11382360.

55. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47(W1):W256–W9. Epub 2019/04/02. doi: 10.1093/nar/gkz239 30931475; PubMed Central PMCID: PMC6602468.

56. Yu G, Lam TT, Zhu H, Guan Y. Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using Ggtree. Mol Biol Evol. 2018;35(12):3041–3. Epub 2018/10/24. doi: 10.1093/molbev/msy194 30351396; PubMed Central PMCID: PMC6278858.

57. Covarrubias-Pazaran G. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer. PLoS One. 2016;11: e0156744. doi: 10.1371/journal.pone.0156744 27271781


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 8

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×