-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaInositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability
Autoři: Feili Yang aff001; Lei Huang aff002; Alexandria Tso aff003; Hong Wang aff001; Li Cui aff003; Lizhu Lin aff003; Xiaohong Wang aff004; Mingming Ren aff002; Xi Fang aff003; Jie Liu aff005; Zhen Han aff002; Ju Chen aff003; Kunfu Ouyang aff001
Působiště autorů: School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China aff001; Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China aff002; University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America aff003; Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China aff004; Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China aff005
Vyšlo v časopise: Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008739
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008739Souhrn
Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.
Klíčová slova:
Embryos – Growth restriction – Mesoderm – Mouse models – placenta – Trophoblasts – Umbilical cord – Somites
Zdroje
1. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361(6410):315–25. doi: 10.1038/361315a0 8381210.
2. Foskett JK, White C, Cheung K-H, Mak D-OD. Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiological Reviews. 2007;87(2):593–658. doi: 10.1152/physrev.00035.2006 17429043
3. Sakakibara S, Nagata E, Takano H, Matsumoto M, Yamada M, Nakagawa T, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379(6561):168–71. doi: 10.1038/379168a0 8538767
4. Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, et al. Abnormal Taste Perception in Mice Lacking the Type 3 Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry. 2007;282(51):37225–31. doi: 10.1074/jbc.M705641200 17925404
5. Nakazawa M, Uchida K, Aramaki M, Kodo K, Yamagishi C, Takahashi T, et al. Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. Journal of Molecular and Cellular Cardiology. 2011;51(1):58–66. doi: 10.1016/j.yjmcc.2011.02.014 21382375
6. Uchida K, Aramaki M, Nakazawa M, Yamagishi C, Makino S, Fukuda K, et al. Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis. PloS one. 2010;5(9):e12500. doi: 10.1371/journal.pone.0012500 20824138
7. Uchida K, Nakazawa M, Yamagishi H, Yamagishi C, Mikoshiba K. Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development. Developmental Biology. 2016;418(1):89–97. doi: 10.1016/j.ydbio.2016.08.007 27514653
8. Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, et al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science (New York, NY). 2005;309(5744):2232–4. doi: 10.1126/science.1114110 16195467
9. Ouyang K, Leandro Gomez-Amaro R, Stachura DL, Tang H, Peng X, Fang X, et al. Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nature communications. 2014;5(1):4814–. doi: 10.1038/ncomms5814 25215520
10. Tang H, Wang H, Lin Q, Fan F, Zhang F, Peng X, et al. Loss of IP3 Receptor–Mediated Ca2+ Release in Mouse B Cells Results in Abnormal B Cell Development and Function. The Journal of Immunology. 2017;199(2):570–80. doi: 10.4049/jimmunol.1700109 28615414
11. Wang H, Jing R, Trexler C, Li Y, Tang H, Pan Z, et al. Deletion of IP3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. J Gastroenterol. 2019;54(5):407–18. doi: 10.1007/s00535-018-1522-7 30382364.
12. Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, et al. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight. 2016;1(17). doi: 10.1172/jci.insight.89402 27777977
13. Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, et al. Inositol 1,4,5-Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. J Am Heart Assoc. 2019;8(4):e011704. doi: 10.1161/JAHA.118.011704 30755057; PubMed Central PMCID: PMC6405661.
14. Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M, Puceat M. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. Mol Biol Cell. 2005;16(5):2414–23. doi: 10.1091/mbc.E04-10-0883 15758029; PubMed Central PMCID: PMC1087245.
15. Roderick HL, Bootman MD. Pacemaking, arrhythmias, inotropy and hypertrophy: the many possible facets of IP3 signalling in cardiac myocytes. J Physiol. 2007;581(Pt 3):883–4. doi: 10.1113/jphysiol.2007.133819 17446217; PubMed Central PMCID: PMC2170819.
16. Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 2019. doi: 10.1038/s41576-019-0169-4 31534202.
17. Burton GJ, Jauniaux E. Development of the Human Placenta and Fetal Heart: Synergic or Independent? Frontiers in physiology. 2018;9 : 373. doi: 10.3389/fphys.2018.00373 29706899
18. Copp AJ. Death before birth: clues from gene knockouts and mutations. Trends Genet. 1995;11(3):87–93. doi: 10.1016/S0168-9525(00)89008-3 7732578.
19. Cooley N, Ouyang K, McMullen JR, Kiriazis H, Sheikh F, Wu W, et al. No contribution of IP3-R(2) to disease phenotype in models of dilated cardiomyopathy or pressure overload hypertrophy. Circ Heart Fail. 2013;6(2):318–25. doi: 10.1161/CIRCHEARTFAILURE.112.972158 23258573; PubMed Central PMCID: PMC4028972.
20. Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, et al. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol. 2017;9(4):274–88. doi: 10.1093/jmcb/mjx014 28419336.
21. Jiao K, Kulessa H, Tompkins K, Zhou Y, Batts L, Baldwin HS, et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 2003;17(19):2362–7. doi: 10.1101/gad.1124803 12975322; PubMed Central PMCID: PMC218073.
22. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230(2):230–42. doi: 10.1006/dbio.2000.0106 11161575.
23. Motoike T, Markham DW, Rossant J, Sato TN. Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis. 2003;35(3):153–9. doi: 10.1002/gene.10175 12640619.
24. Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki Ji, Inoue T. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999;126(15):3437. 10393122
25. Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis. 2000;26(2):113–5. doi: 10.1002/(sici)1526-968x(200002)26 : 2<113::aid-gene3>3.0.co;2-2 10686601.
26. Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, et al. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 2019. Epub 2019/06/19. doi: 10.1038/s41418-019-0374-x 31209364.
27. Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, et al. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight. 2016;1(17):e89402 Epub 2016/10/26. doi: 10.1172/jci.insight.89402 [pii]. 27777977; PubMed Central PMCID: PMC5070959.
28. Duan Y, Wang H, Mitchell-Silbaugh K, Cai S, Fan F, Li Y, et al. Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis. 2019;10(10):766. doi: 10.1038/s41419-019-2014-2 31601784; PubMed Central PMCID: PMC6786998.
29. Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, et al. Adipocyte-specific loss of PPARgamma attenuates cardiac hypertrophy. JCI Insight. 2016;1(16):e89908. doi: 10.1172/jci.insight.89908 27734035; PubMed Central PMCID: PMC5053146.
30. Simmons DG, Fortier AL, Cross JC. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol. 2007;304(2):567–78. doi: 10.1016/j.ydbio.2007.01.009 17289015.
31. Fang X, Bogomolovas J, Zhou PS, Mu Y, Ma X, Chen Z, et al. P209L mutation in Bag3 does not cause cardiomyopathy in mice. Am J Physiol Heart Circ Physiol. 2019;316(2):H392–H9. doi: 10.1152/ajpheart.00714.2018 30499714; PubMed Central PMCID: PMC6397380.
32. Zhang Z, Mu Y, Zhang J, Zhou Y, Cattaneo P, Veevers J, et al. Kindlin-2 Is Essential for Preserving Integrity of the Developing Heart and Preventing Ventricular Rupture. Circulation. 2019;139(12):1554–6. doi: 10.1161/CIRCULATIONAHA.118.038383 30883226; PubMed Central PMCID: PMC6424132.
33. Wu T, Mu Y, Bogomolovas J, Fang X, Veevers J, Nowak RB, et al. HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci U S A. 2017;114(45):11956–61. doi: 10.1073/pnas.1713763114 29078393; PubMed Central PMCID: PMC5692592.
34. Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development. 1996;122(9):2769. 8787751
35. Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000;10(8):345–52. doi: 10.1016/s1050-1738(01)00069-x 11369261.
36. Downs KM, Harmann C. Developmental potency of the murine allantois. Development. 1997;124(14):2769–80. 9226448.
37. Basyuk E, Cross JC, Corbin J, Nakayama H, Hunter P, Nait-Oumesmar B, et al. Murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev Dyn. 1999;214(4):303–11. doi: 10.1002/(SICI)1097-0177(199904)214 : 4<303::AID-AJA3>3.0.CO;2-B 10213386.
38. Inman KE, Downs KM. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis. 2007;45(5):237–58. doi: 10.1002/dvg.20281 17440924.
39. Li Y, Behringer RR. Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nat Genet. 1998;20(3):309–11. doi: 10.1038/3129 9806555.
40. Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nature reviews Genetics. 2001;2(7):538–48. doi: 10.1038/35080570 11433360
41. Watson ED, Cross JC. Development of Structures and Transport Functions in the Mouse Placenta. Physiology. 2005;20(3):180–93. doi: 10.1152/physiol.00001.2005 15888575
42. Watson ED, Cross JC. Development of structures and transport functions in the mouse placenta. Physiology (Bethesda). 2005;20 : 180–93. doi: 10.1152/physiol.00001.2005 15888575.
43. Scott IC, Anson-Cartwright L, Riley P, Reda D, Cross JC. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol Cell Biol. 2000;20(2):530–41. doi: 10.1128/mcb.20.2.530-541.2000 10611232; PubMed Central PMCID: PMC85124.
44. Faria TN, Ogren L, Talamantes F, Linzer DI, Soares MJ. Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta. Biol Reprod. 1991;44(2):327–31. doi: 10.1095/biolreprod44.2.327 2009333.
45. Morasso MI, Grinberg A, Robinson G, Sargent TD, Mahon KA. Placental failure in mice lacking the homeobox gene Dlx3. Proc Natl Acad Sci U S A. 1999;96(1):162–7. doi: 10.1073/pnas.96.1.162 9874789; PubMed Central PMCID: PMC15110.
46. Gardner RL. Clonal analysis of early mammalian development. Philos Trans R Soc Lond B Biol Sci. 1985;312(1153):163–78. doi: 10.1098/rstb.1985.0186 2869527.
47. Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991;113(3):891–911. 1821858.
48. Downs KM, Temkin R, Gifford S, McHugh J. Study of the murine allantois by allantoic explants. Dev Biol. 2001;233(2):347–64. doi: 10.1006/dbio.2001.0227 11336500.
49. Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555(7697):463–8. doi: 10.1038/nature26002 29539633
50. Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, et al. Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol. 2005;25(24):10979–88. doi: 10.1128/MCB.25.24.10979-10988.2005 16314520; PubMed Central PMCID: PMC1316982.
51. Cho CH, Kim SS, Jeong MJ, Lee CO, Shin HS. The Na+ -Ca2+ exchanger is essential for embryonic heart development in mice. Mol Cells. 2000;10(6):712–22. doi: 10.1007/s10059-000-0712-2 11211878.
52. Wakimoto K, Kobayashi K, Kuro OM, Yao A, Iwamoto T, Yanaka N, et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem. 2000;275(47):36991–8. doi: 10.1074/jbc.M004035200 10967099.
53. Cho CH, Lee SY, Shin HS, Philipson KD, Lee CO. Partial rescue of the Na+-Ca2+ exchanger (NCX1) knock-out mouse by transgenic expression of NCX1. Exp Mol Med. 2003;35(2):125–35. doi: 10.1038/emm.2003.18 12754417.
54. Knofler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96. doi: 10.1007/s00018-019-03104-6 31049600; PubMed Central PMCID: PMC6697717.
55. Holmyard D, Lazzarini RA, Cross JC, Fisher SJ, Dawson K, Anson-Cartwright L. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nature Genetics. 2000;25(3):311–4. doi: 10.1038/77076 10888880
56. Li W, Zheng X, Gu JM, Ferrell GL, Brady M, Esmon NL, et al. Extraembryonic expression of EPCR is essential for embryonic viability. Blood. 2005;106(8):2716–22. doi: 10.1182/blood-2005-01-0406 15956290; PubMed Central PMCID: PMC1895308.
Článek Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathwayČlánek Inference of past demography, dormancy and self-fertilization rates from whole genome sequence dataČlánek Eliciting priors and relaxing the single causal variant assumption in colocalisation analysesČlánek The transcription and export complex THO/TREX contributes to transcription termination in plantsČlánek Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere cappingČlánek Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryosČlánek C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 4- Eutanazie na žádost pacientů s demencí? Odborná polemika je stále živá
- „Jednohubky“ z klinického výzkumu – 2026/1
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
-
Všechny články tohoto čísla
- Dynamic localization of SPO11-1 and conformational changes of meiotic axial elements during recombination initiation of maize meiosis
- The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana
- Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways
- Technical and social issues influencing the adoption of preprints in the life sciences
- The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification
- DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways
- Is imprinting the result of “friendly fire” by the host defense system?
- The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network
- XPF–ERCC1: Linchpin of DNA crosslink repair
- A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease
- Deconstructing cerebellar development cell by cell
- The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss
- Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans
- Molecular genetics of maternally-controlled cell divisions
- Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders
- Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish
- An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem
- Discovery of novel hepatocyte eQTLs in African Americans
- Loss-of-function tolerance of enhancers in the human genome
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
- Relaxed constraint and functional divergence of the progesterone receptor (PGR) in the human stem-lineage
- Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals
- Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence
- Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids
- Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell
- Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B
- Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway
- Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice
- Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data
- Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover
- FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks
- Getting clear about the F-word in genomics
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Placental imprinting: Emerging mechanisms and functions
- Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
- Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma
- Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination
- Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
- Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator
- O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1
- The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling
- The transcription and export complex THO/TREX contributes to transcription termination in plants
- Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping
- Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies
- Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
- Correction: Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease
- C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
- Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability
- ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range
- The Drosophila actin nucleator DAAM is essential for left-right asymmetry
- Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining
- Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts
- UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
- Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae
- Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání