Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability

Autoři: Feili Yang aff001;  Lei Huang aff002;  Alexandria Tso aff003;  Hong Wang aff001;  Li Cui aff003;  Lizhu Lin aff003;  Xiaohong Wang aff004;  Mingming Ren aff002;  Xi Fang aff003;  Jie Liu aff005;  Zhen Han aff002;  Ju Chen aff003;  Kunfu Ouyang aff001
Působiště autorů: School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China aff001;  Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China aff002;  University of California San Diego, School of Medicine, Department of Medicine, La Jolla, CA, United States of America aff003;  Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China aff004;  Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China aff005
Vyšlo v časopise: Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008739
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008739


Inositol 1,4,5‐trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.

Klíčová slova:

Embryos – Growth restriction – Mesoderm – Mouse models – placenta – Trophoblasts – Umbilical cord – Somites


1. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361(6410):315–25. doi: 10.1038/361315a0 8381210.

2. Foskett JK, White C, Cheung K-H, Mak D-OD. Inositol Trisphosphate Receptor Ca2+ Release Channels. Physiological Reviews. 2007;87(2):593–658. doi: 10.1152/physrev.00035.2006 17429043

3. Sakakibara S, Nagata E, Takano H, Matsumoto M, Yamada M, Nakagawa T, et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379(6561):168–71. doi: 10.1038/379168a0 8538767

4. Hisatsune C, Yasumatsu K, Takahashi-Iwanaga H, Ogawa N, Kuroda Y, Yoshida R, et al. Abnormal Taste Perception in Mice Lacking the Type 3 Inositol 1,4,5-Trisphosphate Receptor. Journal of Biological Chemistry. 2007;282(51):37225–31. doi: 10.1074/jbc.M705641200 17925404

5. Nakazawa M, Uchida K, Aramaki M, Kodo K, Yamagishi C, Takahashi T, et al. Inositol 1,4,5-trisphosphate receptors are essential for the development of the second heart field. Journal of Molecular and Cellular Cardiology. 2011;51(1):58–66. doi: 10.1016/j.yjmcc.2011.02.014 21382375

6. Uchida K, Aramaki M, Nakazawa M, Yamagishi C, Makino S, Fukuda K, et al. Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis. PloS one. 2010;5(9):e12500. doi: 10.1371/journal.pone.0012500 20824138

7. Uchida K, Nakazawa M, Yamagishi H, Yamagishi C, Mikoshiba K. Type 1 and 3 inositol trisphosphate receptors are required for extra-embryonic vascular development. Developmental Biology. 2016;418(1):89–97. doi: 10.1016/j.ydbio.2016.08.007 27514653

8. Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, et al. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science (New York, NY). 2005;309(5744):2232–4. doi: 10.1126/science.1114110 16195467

9. Ouyang K, Leandro Gomez-Amaro R, Stachura DL, Tang H, Peng X, Fang X, et al. Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nature communications. 2014;5(1):4814–. doi: 10.1038/ncomms5814 25215520

10. Tang H, Wang H, Lin Q, Fan F, Zhang F, Peng X, et al. Loss of IP3 Receptor–Mediated Ca2+ Release in Mouse B Cells Results in Abnormal B Cell Development and Function. The Journal of Immunology. 2017;199(2):570–80. doi: 10.4049/jimmunol.1700109 28615414

11. Wang H, Jing R, Trexler C, Li Y, Tang H, Pan Z, et al. Deletion of IP3R1 by Pdgfrb-Cre in mice results in intestinal pseudo-obstruction and lethality. J Gastroenterol. 2019;54(5):407–18. doi: 10.1007/s00535-018-1522-7 30382364.

12. Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, et al. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight. 2016;1(17). doi: 10.1172/jci.insight.89402 27777977

13. Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, et al. Inositol 1,4,5-Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. J Am Heart Assoc. 2019;8(4):e011704. doi: 10.1161/JAHA.118.011704 30755057; PubMed Central PMCID: PMC6405661.

14. Mery A, Aimond F, Menard C, Mikoshiba K, Michalak M, Puceat M. Initiation of embryonic cardiac pacemaker activity by inositol 1,4,5-trisphosphate-dependent calcium signaling. Mol Biol Cell. 2005;16(5):2414–23. doi: 10.1091/mbc.E04-10-0883 15758029; PubMed Central PMCID: PMC1087245.

15. Roderick HL, Bootman MD. Pacemaking, arrhythmias, inotropy and hypertrophy: the many possible facets of IP3 signalling in cardiac myocytes. J Physiol. 2007;581(Pt 3):883–4. doi: 10.1113/jphysiol.2007.133819 17446217; PubMed Central PMCID: PMC2170819.

16. Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 2019. doi: 10.1038/s41576-019-0169-4 31534202.

17. Burton GJ, Jauniaux E. Development of the Human Placenta and Fetal Heart: Synergic or Independent? Frontiers in physiology. 2018;9:373. doi: 10.3389/fphys.2018.00373 29706899

18. Copp AJ. Death before birth: clues from gene knockouts and mutations. Trends Genet. 1995;11(3):87–93. doi: 10.1016/S0168-9525(00)89008-3 7732578.

19. Cooley N, Ouyang K, McMullen JR, Kiriazis H, Sheikh F, Wu W, et al. No contribution of IP3-R(2) to disease phenotype in models of dilated cardiomyopathy or pressure overload hypertrophy. Circ Heart Fail. 2013;6(2):318–25. doi: 10.1161/CIRCHEARTFAILURE.112.972158 23258573; PubMed Central PMCID: PMC4028972.

20. Wang YJ, Huang J, Liu W, Kou X, Tang H, Wang H, et al. IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol. 2017;9(4):274–88. doi: 10.1093/jmcb/mjx014 28419336.

21. Jiao K, Kulessa H, Tompkins K, Zhou Y, Batts L, Baldwin HS, et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 2003;17(19):2362–7. doi: 10.1101/gad.1124803 12975322; PubMed Central PMCID: PMC218073.

22. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230(2):230–42. doi: 10.1006/dbio.2000.0106 11161575.

23. Motoike T, Markham DW, Rossant J, Sato TN. Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis. 2003;35(3):153–9. doi: 10.1002/gene.10175 12640619.

24. Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki Ji, Inoue T. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999;126(15):3437. 10393122

25. Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis. 2000;26(2):113–5. doi: 10.1002/(sici)1526-968x(200002)26:2<113::aid-gene3>;2-2 10686601.

26. Fan F, Duan Y, Yang F, Trexler C, Wang H, Huang L, et al. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 2019. Epub 2019/06/19. doi: 10.1038/s41418-019-0374-x 31209364.

27. Lin Q, Zhao G, Fang X, Peng X, Tang H, Wang H, et al. IP3 receptors regulate vascular smooth muscle contractility and hypertension. JCI Insight. 2016;1(17):e89402 Epub 2016/10/26. doi: 10.1172/jci.insight.89402 [pii]. 27777977; PubMed Central PMCID: PMC5070959.

28. Duan Y, Wang H, Mitchell-Silbaugh K, Cai S, Fan F, Li Y, et al. Heat shock protein 60 regulates yolk sac erythropoiesis in mice. Cell Death Dis. 2019;10(10):766. doi: 10.1038/s41419-019-2014-2 31601784; PubMed Central PMCID: PMC6786998.

29. Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, et al. Adipocyte-specific loss of PPARgamma attenuates cardiac hypertrophy. JCI Insight. 2016;1(16):e89908. doi: 10.1172/jci.insight.89908 27734035; PubMed Central PMCID: PMC5053146.

30. Simmons DG, Fortier AL, Cross JC. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol. 2007;304(2):567–78. doi: 10.1016/j.ydbio.2007.01.009 17289015.

31. Fang X, Bogomolovas J, Zhou PS, Mu Y, Ma X, Chen Z, et al. P209L mutation in Bag3 does not cause cardiomyopathy in mice. Am J Physiol Heart Circ Physiol. 2019;316(2):H392–H9. doi: 10.1152/ajpheart.00714.2018 30499714; PubMed Central PMCID: PMC6397380.

32. Zhang Z, Mu Y, Zhang J, Zhou Y, Cattaneo P, Veevers J, et al. Kindlin-2 Is Essential for Preserving Integrity of the Developing Heart and Preventing Ventricular Rupture. Circulation. 2019;139(12):1554–6. doi: 10.1161/CIRCULATIONAHA.118.038383 30883226; PubMed Central PMCID: PMC6424132.

33. Wu T, Mu Y, Bogomolovas J, Fang X, Veevers J, Nowak RB, et al. HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci U S A. 2017;114(45):11956–61. doi: 10.1073/pnas.1713763114 29078393; PubMed Central PMCID: PMC5692592.

34. Saga Y, Hata N, Kobayashi S, Magnuson T, Seldin MF, Taketo MM. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development. 1996;122(9):2769. 8787751

35. Saga Y, Kitajima S, Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000;10(8):345–52. doi: 10.1016/s1050-1738(01)00069-x 11369261.

36. Downs KM, Harmann C. Developmental potency of the murine allantois. Development. 1997;124(14):2769–80. 9226448.

37. Basyuk E, Cross JC, Corbin J, Nakayama H, Hunter P, Nait-Oumesmar B, et al. Murine Gcm1 gene is expressed in a subset of placental trophoblast cells. Dev Dyn. 1999;214(4):303–11. doi: 10.1002/(SICI)1097-0177(199904)214:4<303::AID-AJA3>3.0.CO;2-B 10213386.

38. Inman KE, Downs KM. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis. 2007;45(5):237–58. doi: 10.1002/dvg.20281 17440924.

39. Li Y, Behringer RR. Esx1 is an X-chromosome-imprinted regulator of placental development and fetal growth. Nat Genet. 1998;20(3):309–11. doi: 10.1038/3129 9806555.

40. Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nature reviews Genetics. 2001;2(7):538–48. doi: 10.1038/35080570 11433360

41. Watson ED, Cross JC. Development of Structures and Transport Functions in the Mouse Placenta. Physiology. 2005;20(3):180–93. doi: 10.1152/physiol.00001.2005 15888575

42. Watson ED, Cross JC. Development of structures and transport functions in the mouse placenta. Physiology (Bethesda). 2005;20:180–93. doi: 10.1152/physiol.00001.2005 15888575.

43. Scott IC, Anson-Cartwright L, Riley P, Reda D, Cross JC. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol Cell Biol. 2000;20(2):530–41. doi: 10.1128/mcb.20.2.530-541.2000 10611232; PubMed Central PMCID: PMC85124.

44. Faria TN, Ogren L, Talamantes F, Linzer DI, Soares MJ. Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta. Biol Reprod. 1991;44(2):327–31. doi: 10.1095/biolreprod44.2.327 2009333.

45. Morasso MI, Grinberg A, Robinson G, Sargent TD, Mahon KA. Placental failure in mice lacking the homeobox gene Dlx3. Proc Natl Acad Sci U S A. 1999;96(1):162–7. doi: 10.1073/pnas.96.1.162 9874789; PubMed Central PMCID: PMC15110.

46. Gardner RL. Clonal analysis of early mammalian development. Philos Trans R Soc Lond B Biol Sci. 1985;312(1153):163–78. doi: 10.1098/rstb.1985.0186 2869527.

47. Lawson KA, Meneses JJ, Pedersen RA. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development. 1991;113(3):891–911. 1821858.

48. Downs KM, Temkin R, Gifford S, McHugh J. Study of the murine allantois by allantoic explants. Dev Biol. 2001;233(2):347–64. doi: 10.1006/dbio.2001.0227 11336500.

49. Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555(7697):463–8. doi: 10.1038/nature26002 29539633

50. Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, et al. Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol. 2005;25(24):10979–88. doi: 10.1128/MCB.25.24.10979-10988.2005 16314520; PubMed Central PMCID: PMC1316982.

51. Cho CH, Kim SS, Jeong MJ, Lee CO, Shin HS. The Na+ -Ca2+ exchanger is essential for embryonic heart development in mice. Mol Cells. 2000;10(6):712–22. doi: 10.1007/s10059-000-0712-2 11211878.

52. Wakimoto K, Kobayashi K, Kuro OM, Yao A, Iwamoto T, Yanaka N, et al. Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem. 2000;275(47):36991–8. doi: 10.1074/jbc.M004035200 10967099.

53. Cho CH, Lee SY, Shin HS, Philipson KD, Lee CO. Partial rescue of the Na+-Ca2+ exchanger (NCX1) knock-out mouse by transgenic expression of NCX1. Exp Mol Med. 2003;35(2):125–35. doi: 10.1038/emm.2003.18 12754417.

54. Knofler M, Haider S, Saleh L, Pollheimer J, Gamage T, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96. doi: 10.1007/s00018-019-03104-6 31049600; PubMed Central PMCID: PMC6697717.

55. Holmyard D, Lazzarini RA, Cross JC, Fisher SJ, Dawson K, Anson-Cartwright L. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nature Genetics. 2000;25(3):311–4. doi: 10.1038/77076 10888880

56. Li W, Zheng X, Gu JM, Ferrell GL, Brady M, Esmon NL, et al. Extraembryonic expression of EPCR is essential for embryonic viability. Blood. 2005;106(8):2716–22. doi: 10.1182/blood-2005-01-0406 15956290; PubMed Central PMCID: PMC1895308.

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Konsenzuální postupy v léčbě močových infekcí
nový kurz

Hereditární TTR amyloidóza – vzácné, nebo jen neodhalené onemocnění? 2. díl

Současné možnosti v léčbě psoriázy

Svět praktické medicíny 4/2022 (znalostní test z časopisu)

COVID-19 up to date
Autoři: doc. MUDr. Vladimír Koblížek, Ph.D., MUDr. Mikuláš Skála, prof. MUDr. František Kopřiva, Ph.D., prof. MUDr. Roman Prymula, CSc., Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se