Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice


Autoři: Hiromi Yamazaki aff001;  Shuya Kasai aff001;  Junsei Mimura aff001;  Peng Ye aff001;  Atsushi Inose-Maruyama aff001;  Kunikazu Tanji aff002;  Koichi Wakabayashi aff002;  Seiya Mizuno aff003;  Fumihiro Sugiyama aff003;  Satoru Takahashi aff003;  Tsubasa Sato aff001;  Taku Ozaki aff004;  Douglas R. Cavener aff005;  Masayuki Yamamoto aff006;  Ken Itoh aff001
Působiště autorů: Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University, Hirosaki, Japan aff001;  Department of Neuropathology, Institute of Brain Science Graduate School of Medicine, Hirosaki University, Hirosaki, Japan aff002;  Transborder Medical Research Center and Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Japan aff003;  Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University, Morioka, Japan aff004;  Department of Biology, Center for Cellular Dynamics and the Huck Institute of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America aff005;  Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan aff006
Vyšlo v časopise: Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008693
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008693

Souhrn

Amino acids exert many biological functions, serving as allosteric regulators and neurotransmitters, as constituents in proteins and as nutrients. GCN2-mediated phosphorylation of eukaryotic initiation factor 2 alpha (elF2α) restores homeostasis in response to amino acid starvation (AAS) through the inhibition of the general translation and upregulation of amino acid biosynthetic enzymes and transporters by activating the translation of Gcn4 and ATF4 in yeast and mammals, respectively. GCN1 is a GCN2-binding protein that possesses an RWD binding domain (RWDBD) in its C-terminus. In yeast, Gcn1 is essential for Gcn2 activation by AAS; however, the roles of GCN1 in mammals need to be established. Here, we revealed a novel role of GCN1 that does not depend on AAS by generating two Gcn1 mutant mouse lines: Gcn1-knockout mice (Gcn1 KO mice (Gcn1-/-)) and RWDBD-deleted mutant mice (Gcn1ΔRWDBD mice). Both mutant mice showed growth retardation, which was not observed in the Gcn2 KO mice, such that the Gcn1 KO mice died at the intermediate stage of embryonic development because of severe growth retardation, while the Gcn1ΔRWDBD embryos showed mild growth retardation and died soon after birth, most likely due to respiratory failure. Extension of pregnancy by 24 h through the administration of progesterone to the pregnant mothers rescued the expression of differentiation markers in the lungs and prevented lethality of the Gcn1ΔRWDBD pups, indicating that perinatal lethality of the Gcn1ΔRWDBD embryos was due to simple growth retardation. Similar to the yeast Gcn2/Gcn1 system, AAS- or UV irradiation-induced elF2α phosphorylation was diminished in the Gcn1ΔRWDBD mouse embryonic fibroblasts (MEFs), suggesting that GCN1 RWDBD is responsible for GCN2 activity. In addition, we found reduced cell proliferation and G2/M arrest accompanying a decrease in Cdk1 and Cyclin B1 in the Gcn1ΔRWDBD MEFs. Our results demonstrated, for the first time, that GCN1 is essential for both GCN2-dependent stress response and GCN2-independent cell cycle regulation.

Klíčová slova:

Cell cycle and cell division – Cellular stress responses – Cyclins – Embryos – Growth restriction – Immunoblot analysis – Lung development – Phosphorylation


Zdroje

1. Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E. Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta. 2014;1843(9):1948–68. doi: 10.1016/j.bbamcr.2014.04.006 24732012

2. Baird TD, Wek RC. Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr. 2012;3(3):307–21. doi: 10.3945/an.112.002113 22585904

3. Ameri K, Harris AL. Activating transcription factor 4. Int J Biochem Cell Biol. 2008;40(1):14–21. doi: 10.1016/j.biocel.2007.01.020 17466566

4. Hai T, Hartman MG. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene. 2001;273(1):1–11. doi: 10.1016/s0378-1119(01)00551-0 11483355

5. Krishna KH, Kumar MS. Molecular evolution and functional divergence of eukaryotic translation initiation factor 2-alpha kinases. PloS one. 2018;13(3):e0194335. doi: 10.1371/journal.pone.0194335 29538447

6. Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG. Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. EMBO J. 2000;19(8):1887–99. doi: 10.1093/emboj/19.8.1887 10775272

7. Sattlegger E, Hinnebusch AG. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2{alpha} kinase GCN2 during amino acid starvation. J Biol Chem. 2005;280(16):16514–21. doi: 10.1074/jbc.M414566200 15722345

8. Qiu H, Hu C, Dong J, Hinnebusch AG. Mutations that bypass tRNA binding activate the intrinsically defective kinase domain in GCN2. Genes Dev. 2002;16(10):1271–80. doi: 10.1101/gad.979402 12023305

9. Anda S, Zach R, Grallert B. Activation of Gcn2 in response to different stresses. PloS one. 2017;12(8):e0182143. doi: 10.1371/journal.pone.0182143 28771613

10. Baker BM, Nargund AM, Sun T, Haynes CM. Protective coupling of mitochondrial function and protein synthesis via the eIF2alpha kinase GCN-2. PLoS Genet. 2012;8(6):e1002760. doi: 10.1371/journal.pgen.1002760 22719267

11. Borch Jensen M, Qi Y, Riley R, Rabkina L, Jasper H. PGAM5 promotes lasting FoxO activation after developmental mitochondrial stress and extends lifespan in Drosophila. Elife. 2017;6. doi: 10.7554/eLife.26952 28891792

12. Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, et al. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol. 2002;22(19):6681–8. doi: 10.1128/MCB.22.19.6681-6688.2002 12215525

13. Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, McNurlan MA, et al. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem. 2004;279(35):36553–61. doi: 10.1074/jbc.M404559200 15213227

14. Chaveroux C, Lambert-Langlais S, Parry L, Carraro V, Jousse C, Maurin AC, et al. Identification of GCN2 as new redox regulator for oxidative stress prevention in vivo. Biochem Biophys Res Commun. 2011;415(1):120–4. doi: 10.1016/j.bbrc.2011.10.027 22020073

15. Xia X, Lei L, Qin W, Wang L, Zhang G, Hu J. GCN2 controls the cellular checkpoint: potential target for regulating inflammation. Cell Death Discov. 2018;4:20. doi: 10.1038/s41420-017-0022-5 29531817

16. Kwon NH, Kang T, Lee JY, Kim HH, Kim HR, Hong J, et al. Dual role of methionyl-tRNA synthetase in the regulation of translation and tumor suppressor activity of aminoacyl-tRNA synthetase-interacting multifunctional protein-3. Proc Natl Acad Sci U S A. 2011;108(49):19635–40. doi: 10.1073/pnas.1103922108 22106287

17. Kim JM, Seok OH, Ju S, Heo JE, Yeom J, Kim DS, et al. Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway. Science. 2018;362(6418). doi: 10.1126/science.aat0174 30409808

18. Wang SF, Chen MS, Chou YC, Ueng YF, Yin PH, Yeh TS, et al. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2alpha-ATF4-xCT pathway. Oncotarget. 2016;7(45):74132–51. doi: 10.18632/oncotarget.12356 27708226

19. Chaveroux C, Sarcinelli C, Barbet V, Belfeki S, Barthelaix A, Ferraro-Peyret C, et al. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep. 2016;6:27278. doi: 10.1038/srep27278 27255611

20. Eyries M, Montani D, Girerd B, Perret C, Leroy A, Lonjou C, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014;46(1):65–9. doi: 10.1038/ng.2844 24292273

21. Van de Velde LA, Guo XJ, Barbaric L, Smith AM, Oguin TH 3rd, Thomas PG, et al. Stress Kinase GCN2 Controls the Proliferative Fitness and Trafficking of Cytotoxic T Cells Independent of Environmental Amino Acid Sensing. Cell Rep. 2016;17(9):2247–58. doi: 10.1016/j.celrep.2016.10.079 27880901

22. Cambiaghi TD, Pereira CM, Shanmugam R, Bolech M, Wek RC, Sattlegger E, et al. Evolutionarily conserved IMPACT impairs various stress responses that require GCN1 for activating the eIF2 kinase GCN2. Biochem Biophys Res Commun. 2014;443(2):592–7. doi: 10.1016/j.bbrc.2013.12.021 24333428

23. Pereira CM, Sattlegger E, Jiang HY, Longo BM, Jaqueta CB, Hinnebusch AG, et al. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. J Biol Chem. 2005;280(31):28316–23. doi: 10.1074/jbc.M408571200 15937339

24. Hirose T, Horvitz HR. The translational regulators GCN-1 and ABCF-3 act together to promote apoptosis in C. elegans. PLoS Genet. 2014;10(8):e1004512. doi: 10.1371/journal.pgen.1004512 25101958

25. Izquierdo Y, Kulasekaran S, Benito P, Lopez B, Marcos R, Cascon T, et al. Arabidopsis nonresponding to oxylipins locus NOXY7 encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation. Plant Cell Environ. 2018;41(6):1438–52. doi: 10.1111/pce.13182 29499090

26. Knuesel MT, Meyer KD, Donner AJ, Espinosa JM, Taatjes DJ. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol. 2009;29(3):650–61. doi: 10.1128/MCB.00993-08 19047373

27. Deng J, Harding HP, Raught B, Gingras AC, Berlanga JJ, Scheuner D, et al. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol. 2002;12(15):1279–86. doi: 10.1016/s0960-9822(02)01037-0 12176355

28. Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2alpha kinases. Sci Rep. 2016;6:32886. doi: 10.1038/srep32886 27633668

29. Yerlikaya A, Kimball SR, Stanley BA. Phosphorylation of eIF2alpha in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J. 2008;412(3):579–88. doi: 10.1042/BJ20080324 18290760

30. Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 2011;22(22):4390–405. doi: 10.1091/mbc.E11-06-0510 21917591

31. Phillip JM, Wu P-H, Gilkes DM, Williams W, McGovern S, Daya J, et al. Biophysical and biomolecular determination of cellular age in humans. Nat Biomed Eng. 2017;1:0093. doi: 10.1038/s41551-017-0093 31372309

32. Ishikawa K, Ito K, Inoue J, Semba K. Cell growth control by stable Rbg2/Gir2 complex formation under amino acid starvation. Genes Cells. 2013;18(10):859–72. doi: 10.1111/gtc.12082 23899355

33. Ishikawa K, Akiyama T, Ito K, Semba K, Inoue J. Independent stabilizations of polysomal Drg1/Dfrp1 complex and non-polysomal Drg2/Dfrp2 complex in mammalian cells. Biochem Biophys Res Commun. 2009;390(3):552–6. doi: 10.1016/j.bbrc.2009.10.003 19819225

34. Jang SH, Kim AR, Park NH, Park JW, Han IS. DRG2 Regulates G2/M Progression via the Cyclin B1-Cdk1 Complex. Mol Cells. 2016;39(9):699–704. doi: 10.14348/molcells.2016.0149 27669826

35. Song H, Kim SI, Ko MS, Kim HJ, Heo JC, Lee HJ, et al. Overexpression of DRG2 increases G2/M phase cells and decreases sensitivity to nocodazole-induced apoptosis. J Biochem. 2004;135(3):331–5. doi: 10.1093/jb/mvh040 15113831

36. Niehrs C, Acebron SP. Mitotic and mitogenic Wnt signalling. EMBO J. 2012;31(12):2705–13. doi: 10.1038/emboj.2012.124 22617425

37. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140(15):3079–93. doi: 10.1242/dev.091744 23861057

38. Baus F, Gire V, Fisher D, Piette J, Dulic V. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J. 2003;22(15):3992–4002. doi: 10.1093/emboj/cdg387 12881433

39. Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13(2):65–70. doi: 10.1016/s0962-8924(02)00043-0 12559756

40. Pergande M, Motameny S, Ozdemir O, Kreutzer M, Wang H, Daimaguler HS, et al. The genomic and clinical landscape of fetal akinesia. Genet Med. 2020; 22(3):511–523. doi: 10.1038/s41436-019-0680-1 31680123

41. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, et al. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol. 2003;23(16):5651–63. doi: 10.1128/MCB.23.16.5651-5663.2003 12897138

42. Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol. 2015;16(2):82–94. doi: 10.1038/nrm3934 25604195

43. Lim HR, Vo MT, Kim DJ, Lee UH, Yoon JH, Kim HJ, et al. DRG2 Deficient Mice Exhibit Impaired Motor Behaviors with Reduced Striatal Dopamine Release. Int J Mol Sci. 2019;21(1). doi: 10.3390/ijms21010060 31861806

44. Ding Z, Liu Y, Rubio V, He J, Minze LJ, Shi ZZ. OLA1, a Translational Regulator of p21, Maintains Optimal Cell Proliferation Necessary for Developmental Progression. Mol Cell Biol. 2016;36(20):2568–82. doi: 10.1128/MCB.00137-16 27481995

45. Chen H, Song R, Wang G, Ding Z, Yang C, Zhang J, et al. OLA1 regulates protein synthesis and integrated stress response by inhibiting eIF2 ternary complex formation. Sci Rep. 2015;5:13241. doi: 10.1038/srep13241 26283179

46. Nakamura A, Kimura H. A new role of GCN2 in the nucleolus. Biochem Biophys Res Commun. 2017;485(2):484–91. doi: 10.1016/j.bbrc.2017.02.038 28189689

47. Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003;22(22):6068–77. doi: 10.1093/emboj/cdg579 14609953

48. Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4(1):87–98. doi: 10.1016/j.celrep.2013.05.045 23831031

49. Mimura J, Inose-Maruyama A, Taniuchi S, Kosaka K, Yoshida H, Yamazaki H, et al. Concomitant Nrf2- and ATF4-activation by Carnosic Acid Cooperatively Induces Expression of Cytoprotective Genes. Int J Mol Sci. 2019;20(7). doi: 10.3390/ijms20071706 30959808

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2020 Číslo 4

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×