-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaLoss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping
Autoři: Rachel E. Langston aff001; Dominic Palazzola aff001; Erin Bonnell aff002; Raymund J. Wellinger aff002; Ted Weinert aff001
Působiště autorů: Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America aff001; Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada aff002
Vyšlo v časopise: Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008733
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008733Souhrn
In budding yeast, Cdc13, Stn1, and Ten1 form the telomere-binding heterotrimer CST complex. Here we investigate the role of Cdc13/CST in maintaining genome stability by using a Chr VII disome system that can generate recombinants, chromosome loss, and enigmatic unstable chromosomes. In cells expressing a temperature sensitive CDC13 allele, cdc13F684S, unstable chromosomes frequently arise from problems in or near a telomere. We found that, when Cdc13 is defective, passage through S phase causes Exo1-dependent ssDNA and unstable chromosomes that are then the source for additional chromosome instability events (e.g. recombinants, chromosome truncations, dicentrics, and/or chromosome loss). We observed that genome instability arises from a defect in Cdc13’s function during DNA replication, not Cdc13’s putative post-replication telomere capping function. The molecular nature of the initial unstable chromosomes formed by a Cdc13-defect involves ssDNA and does not involve homologous recombination nor non-homologous end joining; we speculate the original unstable chromosome may be a one-ended double strand break. This system defines a link between Cdc13’s function during DNA replication and genome stability in the form of unstable chromosomes, that then progress to form other chromosome changes.
Klíčová slova:
Cell cycle and cell division – DNA recombination – DNA replication – Genetic networks – Chromosome structure and function – Protein structure networks – Synthesis phase – Telomeres
Zdroje
1. Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics. 2012;191 : 1073–1105. doi: 10.1534/genetics.111.137851 22879408
2. Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol. 2007;8 : 825–838. doi: 10.1038/nrm2259 17885666
3. Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae. Molecular Cell. Elsevier; 2014;53 : 954–964. doi: 10.1016/j.molcel.2014.02.030 24656131
4. Wu RA, Upton HE, Vogan JM, Collins K. Telomerase Mechanism of Telomere Synthesis. Annu Rev Biochem. 2017;86 : 439–460. doi: 10.1146/annurev-biochem-061516-045019 28141967
5. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43 : 405–413. doi: 10.1016/0092-8674(85)90170-9 3907856
6. Jain D, Cooper JP. Telomeric strategies: means to an end. Annu Rev Genet. 2010;44 : 243–269. doi: 10.1146/annurev-genet-102108-134841 21047259
7. Sundquist WI, Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. Nature Publishing Group; 1989;342 : 825–829. doi: 10.1038/342825a0 2601741
8. Paeschke K, Capra JA, Zakian VA. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell. Elsevier; 2011;145 : 678–691. doi: 10.1016/j.cell.2011.04.015 21620135
9. Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou M-P, et al. G-quadruplex-induced instability during leading-strand replication. The EMBO Journal. 2011;30 : 4033–4046. doi: 10.1038/emboj.2011.316 21873979
10. Ivessa AS, Zhou J-Q, Schulz VP, Monson EK, Zakian VA. Saccharomyces Rrm3p, a 5”to 3” DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes & Development. 2002;16 : 1383–1396. doi: 10.1101/gad.982902 12050116
11. Goto GH, Zencir S, Hirano Y, Ogi H, Ivessa A, Sugimoto K. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genet. 2015;11: e1005283. doi: 10.1371/journal.pgen.1005283 26263073
12. Costantino L, Koshland D. Genome-wide Map of R-Loop-Induced Damage Reveals How a Subset of R-Loops Contributes to Genomic Instability. Molecular Cell. 2018;71 : 487–497.e3. doi: 10.1016/j.molcel.2018.06.037 30078723
13. Rippe K, Luke B. TERRA and the state of the telomere. Nat Struct Mol Biol. 2015;22 : 853–858. doi: 10.1038/nsmb.3078 26581519
14. Graf M, Bonetti D, Lockhart A, Serhal K, Kellner V, Maicher A, et al. Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell. 2017;170 : 72–85.e14. doi: 10.1016/j.cell.2017.06.006 28666126
15. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10 : 425–448. doi: 10.1146/annurev-pathol-012414-040424 25621662
16. Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329 : 85–93. doi: 10.1016/j.yexcr.2014.09.030 25281304
17. Lambert S, Carr AM. Checkpoint responses to replication fork barriers. Biochimie. 2005;87 : 591–602. doi: 10.1016/j.biochi.2004.10.020 15989976
18. Sogo JM, Lopes M, Foiani M. Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects. Science. American Association for the Advancement of Science; 2002;297 : 599–602. doi: 10.1126/science.1074023 12142537
19. Groth P, Ausländer S, Majumder MM, Schultz N, Johansson F, Petermann E, et al. Methylated DNA causes a physical block to replication forks independently of damage signalling, O(6)-methylguanine or DNA single-strand breaks and results in DNA damage. J Mol Biol. 2010;402 : 70–82. doi: 10.1016/j.jmb.2010.07.010 20643142
20. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller M-C, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. 2013;494 : 492–496. doi: 10.1038/nature11935 23446422
21. Grandin N, Reed SI, Charbonneau M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes & Development. 1997;11 : 512–527.
22. Grandin N, Damon C, Charbonneau M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. The EMBO Journal. 2001;20 : 1173–1183. doi: 10.1093/emboj/20.5.1173 11230140
23. Pennock E, Buckley K, Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001;104 : 387–396. doi: 10.1016/s0092-8674(01)00226-4 11239396
24. Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V. RPA-like proteins mediate yeast telomere function. Nat Struct Mol Biol. 2007;14 : 208–214. doi: 10.1038/nsmb1205 17293872
25. Nugent CI, Hughes TR, Lue NF, Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996;274 : 249–252. doi: 10.1126/science.274.5285.249 8824190
26. Evans SK, Lundblad V. Est1 and Cdc13 as comediators of telomerase access. Science. 1999;286 : 117–120. doi: 10.1126/science.286.5437.117 10506558
27. Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Molecular and Cellular Biology. 1995;15 : 6128–6138. doi: 10.1128/mcb.15.11.6128 7565765
28. Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet. Springer Berlin Heidelberg; 2019;65 : 109–118. doi: 10.1007/s00294-018-0871-3 30066139
29. Faure V, Coulon S, Hardy J, Géli V. Cdc13 and telomerase bind through different mechanisms at the lagging - and leading-strand telomeres. Molecular Cell. 2010;38 : 842–852. doi: 10.1016/j.molcel.2010.05.016 20620955
30. Lue NF. Evolving Linear Chromosomes and Telomeres: A C-Strand-Centric View. Trends in Biochemical Sciences. 2018;43 : 314–326. doi: 10.1016/j.tibs.2018.02.008 29550242
31. Martín V, Du L-L, Rozenzhak S, Russell P. Protection of telomeres by a conserved Stn1-Ten1 complex. PNAS. 2007;104 : 14038–14043. doi: 10.1073/pnas.0705497104 17715303
32. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R, et al. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Molecular Cell. Elsevier; 2009;36 : 207–218. doi: 10.1016/j.molcel.2009.09.017 19854131
33. Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S, et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Molecular Cell. Elsevier; 2009;36 : 193–206. doi: 10.1016/j.molcel.2009.08.009 19854130
34. Chen L-Y, Lingner J. CST for the grand finale of telomere replication. Nucleus. 2013;4 : 277–282. doi: 10.4161/nucl.25701 23851344
35. Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD, Wright WE, et al. Human CST promotes telomere duplex replication and general replication restart after fork stalling. The EMBO Journal. EMBO Press; 2012;31 : 3537–3549. doi: 10.1038/emboj.2012.215 22863775
36. Kasbek C, Wang F, Price CM. Human TEN1 maintains telomere integrity and functions in genome-wide replication restart. J Biol Chem. 2013;288 : 30139–30150. doi: 10.1074/jbc.M113.493478 24025336
37. Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L, Jia P, et al. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress. CellReports. 2016;16 : 1300–1314. doi: 10.1016/j.celrep.2016.06.077 27487043
38. Wellinger RJ. The CST complex and telomere maintenance: the exception becomes the rule. Molecular Cell. 2009;36 : 168–169. doi: 10.1016/j.molcel.2009.10.001 19854124
39. Anderson BH, Kasher PR, Mayer J, Szynkiewicz M, Jenkinson EM, Bhaskar SS, et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nature Publishing Group. Nature Publishing Group; 2012;44 : 338–342. doi: 10.1038/ng.1084 22267198
40. Simon AJ, Lev A, Zhang Y, Weiss B, Rylova A, Eyal E, et al. Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J Exp Med. 2016;213 : 1429–1440. doi: 10.1084/jem.20151618 27432940
41. Opresko PL, Shay JW. Telomere-associated aging disorders. Ageing Res Rev. 2017;33 : 52–66. doi: 10.1016/j.arr.2016.05.009 27215853
42. Chen L-Y, Majerská J, Lingner J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes & Development. 2013;27 : 2099–2108. doi: 10.1101/gad.222893.113 24115768
43. Meeks-Wagner D, Hartwell LH. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell. 1986;44 : 43–52. doi: 10.1016/0092-8674(86)90483-6 3510079
44. Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes & Development. 2006;20 : 159–173. doi: 10.1101/gad.1392506 16384935
45. Weinert TA, Hartwell LH. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Molecular and Cellular Biology. American Society for Microbiology (ASM); 1990;10 : 6554–6564. doi: 10.1128/mcb.10.12.6554 2247073
46. Paek AL, Kaochar S, Jones H, Elezaby A, Shanks L, Weinert T. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes & Development. Cold Spring Harbor Lab; 2009;23 : 2861–2875. doi: 10.1101/gad.1862709 20008936
47. Beyer T, Weinert T. Ontogeny of Unstable Chromosomes Generated by Telomere Error in Budding Yeast. Symington LS, editor. PLoS Genet. Public Library of Science; 2016;12: e1006345. doi: 10.1371/journal.pgen.1006345 27716774
48. Vinton PJ, Weinert T. A Slowed Cell Cycle Stabilizes the Budding Yeast Genome. Genetics. Genetics; 2017;206 : 811–828. doi: 10.1534/genetics.116.197590 28468908
49. Paschini M, Toro TB, Lubin JW, Braunstein-Ballew B, Morris DK, Lundblad V. A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae. Genetics. Genetics Society of America; 2012;191 : 79–93. doi: 10.1534/genetics.111.137869 22377634
50. Carson MJ, Hartwell L. CDC17: an essential gene that prevents telomere elongation in yeast. Cell. 1985;42 : 249–257. doi: 10.1016/s0092-8674(85)80120-3 3893744
51. Hartwell LH, Smith D. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics. Genetics Society of America; 1985;110 : 381–395. 3894160
52. Liu C-C, Gopalakrishnan V, Poon L-F, Yan T, Li S. Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Molecular and Cellular Biology. 2014;34 : 57–70. doi: 10.1128/MCB.01235-13 24164896
53. Lin J-J, Zakian VA. The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. PNAS. 1996;93 : 13760–13765. doi: 10.1073/pnas.93.24.13760 8943008
54. Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell. 2001;106 : 275–286. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11509177&retmode=ref&cmd=prlinks doi: 10.1016/s0092-8674(01)00457-3 11509177
55. Hackett JA, Greider CW. End resection initiates genomic instability in the absence of telomerase. Molecular and Cellular Biology. 2003;23 : 8450–8461. doi: 10.1128/MCB.23.23.8450-8461.2003 14612391
56. Weinert TA, Hartwell LH. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics. Genetics Society of America; 1993;134 : 63–80. 8514150
57. Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic Control of the Cell Division Cycle in Yeast. Science. American Association for the Advancement of Science; 1974;183 : 46–51. doi: 10.1126/science.183.4120.46 4587263
58. Jaspersen SL, Charles JF, Tinker-Kulberg RL, Morgan DO. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol Biol Cell. 1998;9 : 2803–2817. doi: 10.1091/mbc.9.10.2803 9763445
59. Grandin N, Damon C, Charbonneau M. Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination. The EMBO Journal. EMBO Press; 2001;20 : 6127–6139. doi: 10.1093/emboj/20.21.6127 11689452
60. Grandin N, Charbonneau M. The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Molecular and Cellular Biology. 2003;23 : 3721–3734. doi: 10.1128/MCB.23.11.3721-3734.2003 12748277
61. Booth C, Griffith E, Brady G, Lydall D. Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction. Nucleic Acids Research. 2001;29 : 4414–4422. doi: 10.1093/nar/29.21.4414 11691929
62. Ngo H-P, Lydall D. Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9. Copenhaver GP, editor. PLoS Genet. Public Library of Science; 2010;6: e1001072. doi: 10.1371/journal.pgen.1001072 20808892
63. Vodenicharov MD, Wellinger RJ. DNA degradation at unprotected telomeres in yeast is regulated by the CDK1 (Cdc28/Clb) cell-cycle kinase. Molecular Cell. Elsevier; 2006;24 : 127–137. doi: 10.1016/j.molcel.2006.07.035 17018298
64. Dionne I, Wellinger RJ. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. PNAS. 1996;93 : 13902–13907. doi: 10.1073/pnas.93.24.13902 8943033
65. Diede SJ, Gottschling DE. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell. 1999;99 : 723–733. doi: 10.1016/s0092-8674(00)81670-0 10619426
66. Hirano Y, Sugimoto K. Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends. Bloom K, editor. Mol Biol Cell. 2007;18 : 2026–2036. doi: 10.1091/mbc.E06-12-1074 17377065
67. Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. 2007;28 : 638–651. doi: 10.1016/j.molcel.2007.11.001 18042458
68. Lobachev KS, Gordenin DA, Resnick MA. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell. 2002;108 : 183–193. Available: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11832209&retmode=ref&cmd=prlinks doi: 10.1016/s0092-8674(02)00614-1 11832209
69. Cannavo E, Cejka P. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature. 2014;514 : 122–125. doi: 10.1038/nature13771 25231868
70. Hardy J, Churikov D, Géli V, Simon MN. Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA. Nat Commun. Nature Publishing Group; 2014;5 : 5004. doi: 10.1038/ncomms6004 25254351
71. Yu T-Y, Kimble MT, Symington LS. Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection. Proc Natl Acad Sci USA. National Academy of Sciences; 2018;115: E11961–E11969. doi: 10.1073/pnas.1816539115 30510002
72. Deng SK, Yin Y, Petes TD, Symington LS. Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification. Molecular Cell. 2015;60 : 500–508. doi: 10.1016/j.molcel.2015.09.027 26545079
73. Lydall D, Weinert T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science. 1995;270 : 1488–1491. doi: 10.1126/science.270.5241.1488 7491494
74. Zubko MK, Guillard S, Lydall D. Exo1 and Rad24 differentially regulate generation of ssDNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics. Genetics Society of America; 2004;168 : 103–115. doi: 10.1534/genetics.104.027904 15454530
75. Zegerman P, Diffley JFX. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. Nature Publishing Group; 2010;467 : 474–478. doi: 10.1038/nature09373 20835227
76. Maringele L, Lydall D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes & Development. 2002;16 : 1919–1933. doi: 10.1101/gad.225102 12154123
77. García-Rodríguez N, Wong RP, Ulrich HD. The helicase Pif1 functions in the template switching pathway of DNA damage bypass. Nucleic Acids Research. 2018;46 : 8347–8356. doi: 10.1093/nar/gky648 30107417
78. Özer Ö, Hickson ID. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress. Open Biol. 2018;8. doi: 10.1098/rsob.180018 29695617
79. Kramara J, Osia B, Malkova A. Break-Induced Replication: The Where, The Why, and The How. Trends Genet. 2018;34 : 518–531. doi: 10.1016/j.tig.2018.04.002 29735283
80. Anand RP, Lovett ST, Haber JE. Break-induced DNA replication. Cold Spring Harb Perspect Biol. 2013;5: a010397. doi: 10.1101/cshperspect.a010397 23881940
81. Vasan S, Deem A, Ramakrishnan S, Argueso JL, Malkova A. Cascades of genetic instability resulting from compromised break-induced replication. PLoS Genet. 2014;10: e1004119. doi: 10.1371/journal.pgen.1004119 24586181
Článek Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathwayČlánek Inference of past demography, dormancy and self-fertilization rates from whole genome sequence dataČlánek The transcription and export complex THO/TREX contributes to transcription termination in plantsČlánek Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryosČlánek Eliciting priors and relaxing the single causal variant assumption in colocalisation analysesČlánek Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 4- Eutanazie na žádost pacientů s demencí? Odborná polemika je stále živá
- „Jednohubky“ z klinického výzkumu – 2026/1
- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Pomůže AI k rychlejšímu vývoji antibiotik na kapavku a MRSA?
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
-
Všechny články tohoto čísla
- Dynamic localization of SPO11-1 and conformational changes of meiotic axial elements during recombination initiation of maize meiosis
- The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana
- Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways
- Technical and social issues influencing the adoption of preprints in the life sciences
- The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification
- DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways
- Is imprinting the result of “friendly fire” by the host defense system?
- The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network
- XPF–ERCC1: Linchpin of DNA crosslink repair
- A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease
- Deconstructing cerebellar development cell by cell
- The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss
- Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans
- Molecular genetics of maternally-controlled cell divisions
- Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders
- Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish
- An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem
- Discovery of novel hepatocyte eQTLs in African Americans
- Loss-of-function tolerance of enhancers in the human genome
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
- Relaxed constraint and functional divergence of the progesterone receptor (PGR) in the human stem-lineage
- Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals
- Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence
- Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids
- Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell
- Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B
- Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway
- Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice
- Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data
- Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover
- FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks
- Getting clear about the F-word in genomics
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Placental imprinting: Emerging mechanisms and functions
- Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
- Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma
- Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination
- Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
- Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator
- O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1
- The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling
- The transcription and export complex THO/TREX contributes to transcription termination in plants
- Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping
- Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies
- Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
- Correction: Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease
- C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
- Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability
- ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range
- The Drosophila actin nucleator DAAM is essential for left-right asymmetry
- Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining
- Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts
- UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
- Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae
- Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání