-
Články
Top novinky
Reklama- Technologie
Top novinky
Reklama- Magazín
Top novinky
Reklama- Kurzy
Top novinky
Reklama- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Dostupnost léků
Top novinky
Reklama- Téma měsíce
Top novinky
ReklamaTechnical and social issues influencing the adoption of preprints in the life sciences
Autoři: Naomi C. Penfold aff001; Jessica K. Polka aff001
Působiště autorů: ASAPbio, San Francisco, California, United States of America aff001
Vyšlo v časopise: Technical and social issues influencing the adoption of preprints in the life sciences. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008565
Kategorie: Review
doi: https://doi.org/10.1371/journal.pgen.1008565Souhrn
Preprints are gaining visibility in many fields. Thanks to the exponential growth in submissions to bioRxiv, an online server for preprints in biology, versions of manuscripts prior to the completion of journal-organized peer review are poised to become a standard component of the publishing experience in the life sciences. Here, we provide an overview of current challenges facing preprints, both technical and social, and a vision for their future development.
Klíčová slova:
Biology and life sciences – Careers – Open access publishing – Peer review – Research funding – Science policy – Scientific publishing – Scientists
Zdroje
1. Tregenza T. Gender bias in the refereeing process? Trends Ecol Evol. 2002 Aug 1;17(8):349–50.
2. Shen YA, Webster JM, Shoda Y, Fine I. Persistent Underrepresentation of Women’s Science in High Profile Journals. bioRxiv. 2018 Mar 8;275362.
3. Murray D, Siler K, Larivière V, Chan WM, Collings AM, Raymond J, et al. Gender and international diversity improves equity in peer review. bioRxiv. 2019 Apr 11;400515.
4. Royle S. Waiting to happen II: Publication lag times [Internet]. quantixed. 2015. Available from: http://web.archive.org/web/20190412012435/http://quantixed.org/2015/03/16/waiting-to-happen-ii-publication-lag-times/. [cited 2019 May 31].
5. Himmelstein D. Publication delays at PLOS and 3,475 other journals. Satoshi Village [Internet]. 2015 Jun 29. Available from: http://web.archive.org/web/20180503071358/http://blog.dhimmel.com/plos-and-publishing-delays/. [cited 2019 May 31].
6. Cobb M. The prehistory of biology preprints: A forgotten experiment from the 1960s. PLoS Biol. 2017 Nov 16;15(11):e2003995. doi: 10.1371/journal.pbio.2003995 29145518
7. World University Rankings 2019: methodology [Internet]. Times Higher Education (THE). 2018. Available from: http://web.archive.org/web/20191104165124/https://www.timeshighereducation.com/world-university-rankings/world-university-rankings-2019-methodology. [cited 2019 Nov 25].
8. Lin J. Preprints growth rate ten times higher than journal articles [Internet]. Crossref. Available from: https://web.archive.org/web/20190522083623/https://www.crossref.org/blog/preprints-growth-rate-ten-times-higher-than-journal-articles/. [cited 2019 Nov 28].
9. Kleinert S, Horton R. Preprints with The Lancet: joining online research discussion platforms. The Lancet. 2018 Jun 23;391(10139):2482–3.
10. Mallapaty S. African scientists launch their own preprint repository. Nature [Internet]. 2018 Jun 25. Available from: https://web.archive.org/web/20190312102218/https://www.nature.com/articles/d41586-018-05543-w. [cited 2019 Nov 28].
11. Levchenko M. Preprints in Europe PMC: reducing friction for discoverability [Internet]. Europe PMC Blog. 2018. Available from: https://web.archive.org/web/20190821213831/http://blog.europepmc.org/2018/07/preprints.html. [cited 2019 Aug 21].
12. Joerg Heber on Twitter: “Am excited that as of today we are linking to preprints posted to @biorxivpreprint from the published article itself. This also applies to previously published papers. https://t.co/1CPAMRWABh https://t.co/YjFCtfPp7g”/Twitter [Internet]. Twitter. Available from: https://web.archive.org/web/20191128193458/https://twitter.com/joergheber/status/1020105070875045888. [cited 2019 Nov 28].
13. J. Am. Chem. Soc. on Twitter: "The editors’ decision is in! JACS will now consider submissions of manuscripts previously posted as preprints on @ChemRxiv. Details to follow… " / Twitter [Internet]. Twitter. Available from: https://web.archive.org/web/20180820152244/https://twitter.com/J_A_C_S/status/1031300824889208833. [cited 2019 Nov 28].
14. European Research Council. Main Changes Expected in the ERC Work Programme 2019 [Internet]. Available from: https://web.archive.org/web/20180810203015/https://erc.europa.eu/sites/default/files/content/pages/pdf/ERC-2019-Work-Programme-main-changes.pdf. [cited 2019 Nov 26].
15. PKP and SciELO announce development of open source Preprint Server system | SciELO in Perspective [Internet]. 2018. Available from: https://web.archive.org/web/20180921153453/https://blog.scielo.org/en/2018/09/21/pkp-and-scielo-announce-development-of-open-source-preprint-server-system/. [cited 2019 Nov 28].
16. Wellcome updates open access policy to align with cOAlition S [Internet]. Wellcome. 2019. Available from: https://wellcome.ac.uk/news/wellcome-updates-open-access-policy-align-coalition-s. [cited 2019 Aug 21].
17. ICMJE | Recommendations [Internet]. Available from: http://web.archive.org/web/20191128174016/http://www.icmje.org/news-and-editorials/icmje-recommendations_annotated_dec18.pdf. [cited 2019 Nov 28].
18. Israel Science Foundation | Research Gateways | F1000Research [Internet]. Available from: http://web.archive.org/web/20191128193840/https://f1000research.com/isf. [cited 2019 Nov 28].
19. Nakagawa S. EcoEvoRxiv launched! [Internet]. Transparency in Ecology and Evolution. 2019. Available from: http://web.archive.org/web/20190115134549/http://www.ecoevotransparency.org/2019/01/14/ecoevorxiv-launched/. [cited 2019 Nov 28].
20. John Inglis on Twitter: “Full text HTML begins rolling out across the 42,000 articles on @biorxivpreprint this week, starting with the earliest. Outcome of huge collaborative effort from @Novatechset, @highwirepress, and bioRxiv team, funded by @cziscience. Future articles will be FT 2d after posting.” / Twitter [Internet]. Twitter. Available from: http://web.archive.org/web/20190529151025/https://twitter.com/JohnRInglis/status/1092123015385616392. [cited 2019 Nov 28].
21. AMRC on Twitter: “AMRC #OpenResearch is officially launching today! It will help participating charities maximise the value of their research investment by providing their researchers with the opportunity to publish any & all aspects of their work rapidly & cost effectively https://t.co/keguIt7Ohz https://t.co/gddRKMdlSS”/Twitter [Internet]. Twitter. Available from: http://web.archive.org/web/20191128194153/https://twitter.com/AMRC/status/1097782846083588097. [cited 2019 Nov 28].
22. Beilstein Archives [Internet]. Available from: http://web.archive.org/web/20190428121154/https://www.beilstein-archives.org/xiv/. [cited 2019 Nov 28].
23. Crystal M. It’s Our Preprint Anniversary! [Internet]. The Official PLOS Blog. 2019 Available from: http://web.archive.org/web/20191111140059/https://blogs.plos.org/plos/2019/04/its-our-preprint-anniversary/. [cited 2019 Nov 28].
24. Demain P. New Features Alert! Improvements to Adding and Grouping Works [Internet]. ORCID Blog. 2019. Available from: http://web.archive.org/web/20191128194544/https://orcid.org/blog/2019/04/29/new-features-alert-improvements-adding-and-grouping-works. [cited 2019 Nov 28].
25. Springer Nature journals unify their policy to encourage preprint sharing. Nature. 2019 May 15;569 : 307–307.
26. Participating Journals & Platforms [Internet]. Research Square. Available from: http://web.archive.org/web/20191008201413/https://www.researchsquare.com/journals. [cited 2019 Nov 28].
27. Frequently Asked Questions (FAQ) [Internet]. bioRxiv. Available from: https://web.archive.org/web/20190821203507/https://www.biorxiv.org/about/FAQ. [cited 2019 Aug 21].
28. medRxiv [Internet]. The Yoda Project. Available from: https://web.archive.org/web/20190821214815/https://yoda.yale.edu/medrxiv. [cited 2019 Aug 21].
29. Research outputs find a home at IndiaRxiv–IndiaRxiv [Internet]. Available from: http://web.archive.org/web/20190905143532/http://indiarxiv.in/research-outputs-find-a-home-at-indiarxiv/. [cited 2019 Nov 28].
30. Hoyt J. PeerJ Preprints to stop accepting new preprints Sep 30th 2019 [Internet]. PeerJ Blog. 2019. Available from: http://web.archive.org/web/20191112120834/https://peerj.com/blog/post/115284881747/peerj-preprints-to-stop-accepting-new-preprints-sep-30-2019/. [cited 2019 Nov 28].
31. Transparent review in preprints [Internet]. Cold Spring Harbor Laboratory. 2019. Available from: http://web.archive.org/web/20191014223638/https://www.cshl.edu/transparent-review-in-preprints/. [cited 2019 Nov 28].
32. Sever R, Roeder T, Hindle S, Sussman L, Black K-J, Argentine J, et al. bioRxiv: the preprint server for biology. bioRxiv. 2019 Nov 6;833400.
33. Research Square on Twitter: “This Monday we’re celebrating 9,000 #preprints on #ResearchSquare! Browse the latest #research in your field & comment on emerging #science before it’s published https://t.co/kb1Zaa9Hpy”/Twitter [Internet]. Twitter. Available from: http://web.archive.org/web/20191128195329/https/:/twitter.com/researchsquare/status/1198979654712995840?s=20. [cited 2019 Nov 28].
34. Research Square on Twitter: “Today we’re adding 13 more @BioMedCentral journals to #InReview including @MicrobiomeJ & Environmental Health. Opt in when you submit to 70+ journals including the entire @BMC_series. View the full list of participating journals here: https://t.co/KUHjw81cVA @SpringerNature” [Internet]. Available from: https://web.archive.org/web/20191031141820/https:/twitter.com/researchsquare/status/1189904859157422081. [cited 2019 Nov 25].
35. News from around the web [Internet]. ASAPbio. Available from: https://web.archive.org/web/20190821215354/https://asapbio.org/news-from-around-the-web. [cited 2019 Aug 21].
36. Tennant J, Bauin S, James S, Kant J. The evolving preprint landscape: Introductory report for the Knowledge Exchange working group on preprints. 2018 May 17. Available from: https://osf.io/preprints/metaarxiv/796tu/. [cited 2019 May 31].
37. Kling R, Spector LB, Fortuna J. The real stakes of virtual publishing: The transformation of E-Biomed into PubMed central. J Am Soc Inf Sci Technol. 2004;55(2):127–48.
38. Chiarelli A, Johnson R, Pinfield S, Richens E. Practices, drivers and impediments in the use of preprints (Phase 1 report) [Internet]. 2019 May 1. Available from: https://zenodo.org/record/2654832#.XPEaXNNKg_U. [cited 2019 May 31].
39. Dray S. Information Exchange Group No. 5. Science. 1966 Aug 12;153(3737):694–5.
40. Klein M, Broadwell P, Farb SE, Grappone T. Comparing Published Scientific Journal Articles to Their Pre-Print Versions—Extended Version. Int J Digit Libr [Internet]. 2018 Feb 5. Available from: http://arxiv.org/abs/1803.09701. [cited 2019 May 31].
41. Larivière V, Sugimoto CR, Macaluso B, Milojević S, Cronin B, Thelwall M. arXiv E-prints and the journal of record: An analysis of roles and relationships. J Assoc Inf Sci Technol. 2014;65(6):1157–69.
42. Abdill RJ, Blekhman R. Tracking the popularity and outcomes of all bioRxiv preprints. Pewsey E, Rodgers P, Greene CS, editors. eLife. 2019 Apr 24;8:e45133. doi: 10.7554/eLife.45133 31017570
43. Fraser N, Momeni F, Mayr P, Peters I. The effect of bioRxiv preprints on citations and altmetrics. bioRxiv. 2019 Jun 22;673665.
44. Serghiou S, Ioannidis JPA. Altmetric Scores, Citations, and Publication of Studies Posted as Preprints. JAMA. 2018 Jan 23;319(4):402–4. doi: 10.1001/jama.2017.21168 29362788
45. 1. Fu DY, Hughey JJ. Releasing a preprint is associated with more attention and citations for the peer-reviewed article. Rodgers P, Amaral O, editors. eLife. 2019 Dec 6;8:e52646. doi: 10.7554/eLife.52646 31808742
46. Inglis J, Sever R. bioRxiv: a progress report [Internet]. ASAPbio. 2016. Available from: https://web.archive.org/web/20190821214557/https://asapbio.org/biorxiv. [cited 2019 Aug 21].
47. Rapid Reviews for Rapid Outbreak Response [Internet]. Outbreak Science Blog. 2019. Available from: http://web.archive.org/web/20191128174326/https://blog.outbreakscience.org/rapid-reviews-for-rapid-outbreak-response/. [cited 2019 Nov 28].
48. Berlin S. If the papers don’t come to the journal. EMBO Rep. 2018 Apr 1;19(4):e45911. doi: 10.15252/embr.201845911 29472243
49. Slavov N. Why I love preprints [Internet]. Slavov Lab. 2017. Available from: https://web.archive.org/web/20180828220418/web.northeastern.edu/slavovlab/blog/2017/09/28/biomedical-preprints-benefits/. [cited 2019 Aug 21].
50. Barsh GS, Bergman CM, Brown CD, Singh ND, Copenhaver GP. Bringing PLOS Genetics Editors to Preprint Servers. PLOS Genet. 2016 Dec 1;12(12):e1006448. doi: 10.1371/journal.pgen.1006448 27906975
51. Barrett Spencer C. H. Proceedings B 2017: the year in review. Proc R Soc B Biol Sci. 2018 Jan 10;285(1870):20172553.
52. Advancing the sharing of research results for the life sciences [Internet]. bioRxiv. Available from: https://web.archive.org/web/20190821203542/https://www.biorxiv.org/about-biorxiv. [cited 2019 Aug 21].
53. Anderson K. The Tincture of Time -Should Journals Return to Slower Publishing Practices? [Internet]. The Scholarly Kitchen. 2017. Available from: http://web.archive.org/web/20190823114127/https://scholarlykitchen.sspnet.org/2017/03/28/the-tincture-of-time-should-journals-return-to-slower-publishing-practices/. [cited 2019 May 31].
54. Greene C. Why we preprint. [Internet]. Casey Greene. 2015. Available from: http://web.archive.org/web/20181116081712/https://medium.com/@greenescientist/why-we-preprint-fb3bfbcdf4ff. [cited 2019 May 31].
55. SHERPA/RoMEO—Search—Publisher copyright policies & self-archiving [Internet]. Available from: https://web.archive.org/web/20190821204015/ http://www.sherpa.ac.uk/romeo/search.php. [cited 2019 Aug 21].
56. List of academic journals by preprint policy—Wikipedia [Internet]. Available from: https://web.archive.org/save/https://en.wikipedia.org/wiki/List_of_academic_journals_by_preprint_policy. [cited 2019 Aug 21].
57. Transpose [Internet]. Available from: http://web.archive.org/web/20190821204315/https://transpose-publishing.github.io/#/. [cited 2019 Aug 21].
58. Bishop D. Tweet [Internet]. Twitter. Available from: https://web.archive.org/web/20190821204445/https://twitter.com/deevybee/status/1127186891533639681. [cited 2019 Aug 21].
59. McKiernan EC, Schimanski LA, Nieves CM, Matthias L, Niles MT, Alperin JP. Use of the Journal Impact Factor in academic review, promotion, and tenure evaluations [Internet]. PeerJ Inc.; 2019 Apr. Report No.: e27638v2. Available from: https://peerj.com/preprints/27638. [cited 2019 May 31].
60. University policies and statements on hiring, promotion, and journal license negotiation [Internet]. ASAPbio. Available from: https://web.archive.org/web/20190821210111/https://asapbio.org/university-policies. [cited 2019 Aug 21].
61. Fernandes JD, Sarabipour S, Smith CT, Niemi NM, Jadavji NM, Kozik AJ, et al. Insights from a survey-based analysis of the academic job market. bioRxiv. 2019 Oct 9;796466.
62. Spiro J. SFARI supports preprints for the life sciences [Internet]. SFARI. 2016. Available from: https://web.archive.org/web/20190821212320/https://www.sfari.org/2016/05/20/sfari-supports-preprints-for-the-life-sciences/. [cited 2019 Aug 21].
63. Funder policies [Internet]. ASAPbio. Available from: https://web.archive.org/web/20190821212524/https://asapbio.org/funder-policies. [cited 2019 Aug 21].
64. After My Application is Submitted, Can I Include a Copy or Citation of a Preprint as Post-submission Materials? [Internet]. NIH Extramural Nexus. 2018. Available from: http://web.archive.org/web/20190821212758/https://nexus.od.nih.gov/all/2018/03/02/post-submission-materials-can-i-include-a-copy-or-citation-of-a-preprint/. [cited 2019 Aug 21].
65. Science Initiative Privacy Principles [Internet]. Chan Zuckerberg Initiative. 2018. Available from: http://web.archive.org/web/20190821212941/https://chanzuckerberg.com/privacy/science-privacy-principles/. [cited 2019 Aug 21].
66. Sever R, Eisen M, Inglis J. Plan U: Universal access to scientific and medical research via funder preprint mandates. PLoS Biol. 2019 Jun 4;17(6):e3000273. doi: 10.1371/journal.pbio.3000273 31163026
67. Reichmann S, Ross-Hellauer T, Hindle S, McDowell G, Lin J, Penfold N, et al. Editorial policies of many highly-cited journals are hidden or unclear [Internet]. 2019 May 5. Available from: https://zenodo.org/record/3237242. [cited 2019 Nov 25].
68. Loew LM, Staehle B. 2017 Ushers in New Editorial Board Members and More. Biophys J. 2017 Jan 10;112(1):E01–2. doi: 10.1016/j.bpj.2016.12.014 28076821
69. Plant Direct Journal on Twitter: “@JohnRInglis @PLOS @biorxivpreprint we have been doing it since we launched last year. . . . see for ex. https://t.co/S145EODDOU”/Twitter [Internet]. Twitter. Available from: https://web.archive.org/web/20191128202008/https://twitter.com/PlantDirectJ/status/1020134027616047104. [cited 2019 Nov 28].
70. Preprints [Internet]. PLOS One. Available from: https://web.archive.org/web/20190925025506/https://journals.plos.org/plosone/s/preprints. [cited 2019 Nov 28].
71. Article publication and history dates–JATS4R [Internet]. Available from: https://jats4r.org/article-publication-and-history-dates. [cited 2019 Nov 28].
72. Malički M, Sarol MJ, Alperin JP. Analyzing preprints: The challenges of working with SHARE metadata [Internet]. Scholarly Communications Lab | ScholCommLab. 2019. Available from: http://web.archive.org/web/20190906133051/https://www.scholcommlab.ca/2019/09/04/preprints-challenges-part-one/. [cited 2019 Nov 25].
73. bioRxiv API [Internet]. Available from: http://web.archive.org/web/20191111115439/http://api.biorxiv.org/. [cited 2019 Nov 26].
74. Peer Community In [Internet]. Available from: http://web.archive.org/web/20190923105228/https://peercommunityin.org/. [cited 2019 Aug 21].
75. OSF Preprints [Internet]. Available from: http://web.archive.org/web/20191113184523/https://osf.io/preprints/. [cited 2019 Aug 21].
76. Narock TW, Goldstein E. Quantifying the growth of preprint services hosted by the Center for Open Science [Internet]. Open Science Framework; 2019 Apr. Available from: https://osf.io/5fk6c. [cited 2019 May 31].
77. We support preprints… –Let’s Accelerate Scientific Publishing In The Life Sciences! [Internet]. Available from: https://web.archive.org/web/20190821215234/https://wesupportpreprints.wordpress.com/. [cited 2019 Aug 21].
78. Read the Budapest Open Access Initiative [Internet]. Budapest Open Access Initiative. 2002. Available from: https://web.archive.org/web/20190821215658/https://www.budapestopenaccessinitiative.org/read. [cited 2019 Aug 21].
79. Open Access Subset [Internet]. PubMed Central. Available from: https://web.archive.org/save/https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/. [cited 2019 Aug 21].
80. Himmelstein D. The licensing of bioRxiv preprints. Satoshi Village [Internet]. 2016 Dec 5. Available from: https://blog.dhimmel.com/biorxiv-licenses/. [cited 2019 May 31].
81. Preprint licensing survey–ASAPbio [Internet]. Available from: https://web.archive.org/web/20190821220137/https://asapbio.org/licensing-survey. [cited 2019 Aug 21].
82. NOT-OD-17-050: Reporting Preprints and Other Interim Research Products [Internet]. NIH. 2017. Available from: https://web.archive.org/web/20190821212644/https://grants.nih.gov/grants/guide/notice-files/NOT-OD-17-050.html. [cited 2019 Aug 21].
83. Hill R, Stein C. Scooped! Estimating Rewards for Priority in Science.:61.
84. Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, et al. Ten Hot Topics around Scholarly Publishing. Publications. 2019 Jun;7(2):34.
85. Bourne PE, Polka JK, Vale RD, Kiley R. Ten simple rules to consider regarding preprint submission. PLoS Comput Biol. 2017 May 4;13(5):e1005473. doi: 10.1371/journal.pcbi.1005473 28472041
86. Sheldon T. Preprints could promote confusion and distortion. Available from: https://www.nature.com/articles/d41586-018-05789-4. [cited 2019 Nov 25].
87. Harkinson J. “Game-changing” study links cellphone radiation to cancer [Internet]. Mother Jones. Available from: http://web.archive.org/web/20191029201950/https://www.motherjones.com/environment/2016/05/federal-study-links-cell-phone-radiation-cancer/. [cited 2019 Nov 25].
88. Stockton EGE Nick. You Need More Than Rat Tumors to Prove Phones Cause Cancer. Wired [Internet]. 2016 May 28. Available from: http://web.archive.org/web/20190905030719/https://www.wired.com/2016/05/need-rat-tumors-prove-phones-cause-cancer/. [cited 2019 Nov 25].
89. Soderberg CK, Errington T, Nosek BA. Credibility of Preprints Survey Presentations. 2019 Oct 2. Available from: https://osf.io/rwne8/. [cited 2019 Nov 25].
90. Blair A. Too much to know: managing scholarly information before the modern age [Internet]. Yale University Press; 2010. Available from: https://www.worldcat.org/title/too-much-to-know-managing-scholarly-information-before-the-modern-age/oclc/601347978. [cited 2019 Aug 21].
91. Seglen PO. Why the impact factor of journals should not be used for evaluating research. BMJ. 1997 Feb 15;314(7079):498–502. doi: 10.1136/bmj.314.7079.497 9056804
92. Moher D, Naudet F, Cristea IA, Miedema F, Ioannidis JPA, Goodman SN. Assessing scientists for hiring, promotion, and tenure. PLoS Biol. 2018 Mar 29;16(3):e2004089. doi: 10.1371/journal.pbio.2004089 29596415
93. Sarabipour S, Debat HJ, Emmott E, Burgess SJ, Schwessinger B, Hensel Z. On the value of preprints: An early career researcher perspective. PLoS Biol. 2019 Feb 21;17(2):e3000151. doi: 10.1371/journal.pbio.3000151 30789895
94. Penfold NC, Polka J. Preprints in biology as a fraction of the biomedical literature [Internet]. Zenodo; 2019. Available from: https://zenodo.org/record/3256298. [cited 2019 Nov 25].
95. Albornoz D, Chan L. Power and Inequality in Open Science Discourses. IRIS—Rev Informação Mem E Tecnol. 2018 Nov 12;4(1):70–9.
96. Okune A. Decolonizing scholarly data and publishing infrastructures [Internet]. Africa at LSE. 2019. Available from: https://web.archive.org/web/20190821221035/https://blaogs.lse.ac.uk/africaatlse/2019/05/29/decolonizing-scholarly-data-and-publishing-infrastructures/. [cited 2019 May 31].
97. Debat H, Babini D. Plan S in Latin America: A precautionary note [Internet]. PeerJ Inc.; 2019 Jul. Report No.: e27834v2. Available from: https://peerj.com/preprints/27834. [cited 2019 Nov 28].
98. Chambers C, Morey C, Open Science Working Group, School of Psychology/CUBRIC, Cardiff University. 2017 Survey on Open Research Practices [Internet]. 03 : 52 PM. Available from: https://mfr.osf.io/render?url = https://osf.io/dmfke/?action=download%26mode=render. [cited 2019 Aug 22].
99. VanguardSTEM [Internet]. Available from: https://web.archive.org/web/20190821222639/https://www.vanguardstem.com/. [cited 2019 Aug 21].
100. 500 Women Scientists [Internet]. Available from: https://web.archive.org/web/20190821222728/https://500womenscientists.org/. [cited 2019 Aug 21].
101. sBotLite (@sbotlite) [Internet]. Twitter. Available from: https://web.archive.org/web/20190821222840/https://twitter.com/sbotlite. [cited 2019 Aug 21].
102. Anderson K. Comment on Two New Initiatives at eLife To Start the Eisen Era [Internet]. 2019. Available from: https://web.archive.org/web/20190821222256/https://scholarlykitchen.sspnet.org/2019/08/15/two-new-initiatives-at-elife-to-start-the-eisen-era/#comment-83759. [cited 2019 Aug 21].
103. Malički M, Sarol MJ, Alperin JP. Analyzing Preprints: The challenges of working with metadata from bioRxiv [Internet]. Scholarly Communications Lab | ScholCommLab. 2019. Available from: http://web.archive.org/web/20191128195811/https://www.scholcommlab.ca/2019/10/10/preprints-challenges-part-three/. [cited 2019 Nov 25].
104. Clark T, Ciccarese P, Goble C. Micropublications: a semantic model for claims, evidence, arguments and annotations in biomedical communications. J Biomed Semant [Internet]. 2014 Jul 4;5(28). Available from: https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-5-28. [cited 2019 Aug 21].
105. The MRC supports preprints—News and features [Internet]. Medical Research Council. 2017. Available from: https://web.archive.org/save/https://mrc.ukri.org/news/browse/the-mrc-supports-preprints/. [cited 2019 Aug 21].
Článek Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathwayČlánek Inference of past demography, dormancy and self-fertilization rates from whole genome sequence dataČlánek Eliciting priors and relaxing the single causal variant assumption in colocalisation analysesČlánek The transcription and export complex THO/TREX contributes to transcription termination in plantsČlánek Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere cappingČlánek Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryosČlánek C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 4- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
- VIDEO: Terénní tým ECMO zachraňuje životy přímo v pražských ulicích
- Alkohol, zima a léky − sezónní rizika interakcí
- „Jednohubky“ z výzkumu 2025/40 – vánoční a silvestrovská porce
-
Všechny články tohoto čísla
- Dynamic localization of SPO11-1 and conformational changes of meiotic axial elements during recombination initiation of maize meiosis
- The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana
- Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways
- Technical and social issues influencing the adoption of preprints in the life sciences
- The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification
- DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways
- Is imprinting the result of “friendly fire” by the host defense system?
- The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network
- XPF–ERCC1: Linchpin of DNA crosslink repair
- A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease
- Deconstructing cerebellar development cell by cell
- The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss
- Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans
- Molecular genetics of maternally-controlled cell divisions
- Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders
- Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish
- An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem
- Discovery of novel hepatocyte eQTLs in African Americans
- Loss-of-function tolerance of enhancers in the human genome
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
- Relaxed constraint and functional divergence of the progesterone receptor (PGR) in the human stem-lineage
- Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals
- Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence
- Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids
- Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell
- Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B
- Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway
- Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice
- Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data
- Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover
- FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks
- Getting clear about the F-word in genomics
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Placental imprinting: Emerging mechanisms and functions
- Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
- Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma
- Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination
- Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
- Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator
- O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1
- The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling
- The transcription and export complex THO/TREX contributes to transcription termination in plants
- Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping
- Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies
- Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
- Correction: Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease
- C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
- Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability
- ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range
- The Drosophila actin nucleator DAAM is essential for left-right asymmetry
- Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining
- Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts
- UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
- Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae
- Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Technologie