Spastin mutations impair coordination between lipid droplet dispersion and reticulum

Autoři: Yoan Arribat aff001;  Dogan Grepper aff001;  Sylviane Lagarrigue aff001;  Timothy Qi aff002;  Sarah Cohen aff002;  Francesca Amati aff001
Působiště autorů: Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland aff001;  Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States aff002;  Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland aff003
Vyšlo v časopise: Spastin mutations impair coordination between lipid droplet dispersion and reticulum. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008665
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008665


Lipid droplets (LD) are affected in multiple human disorders. These highly dynamic organelles are involved in many cellular roles. While their intracellular dispersion is crucial to ensure their function and other organelles-contact, underlying mechanisms are still unclear. Here we show that Spastin, one of the major proteins involved in Hereditary Spastic Paraplegia (HSP), controls LD dispersion. Spastin depletion in zebrafish affects metabolic properties and organelle dynamics. These functions are ensured by a conserved complex set of splice variants. M1 isoforms determine LD dispersion in the cell by orchestrating endoplasmic reticulum (ER) shape along microtubules (MTs). To further impact LD fate, Spastin modulates transcripts levels and subcellular location of other HSP key players, notably Seipin and REEP1. In pathological conditions, mutations in human Spastin M1 disrupt this mechanism and impacts LD network. Spastin depletion influences not only other key proteins but also modulates specific neutral lipids and phospholipids, revealing an impact on membrane and organelle components. Altogether our results show that Spastin and its partners converge in a common machinery that coordinates LD dispersion and ER shape along MTs. Any alteration of this system results in HSP clinical features and impacts lipids profile, thus opening new avenues for novel biomarkers of HSP.

Klíčová slova:

Cellular structures and organelles – Confocal microscopy – Embryos – HeLa cells – Lipids – Skeletal muscles – Tubulins – Zebrafish


1. Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics. 2018:e1700223. doi: 10.1002/pmic.201700223 30216670

2. Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1260–72.

3. Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol. 2018;9:1022. doi: 10.3389/fimmu.2018.01022 29875768

4. Liu L, MacKenzie KR, Putluri N, Maletic-Savatic M, Bellen HJ. The Glia-Neuron Lactate Shuttle and Elevated ROS Promote Lipid Synthesis in Neurons and Lipid Droplet Accumulation in Glia via APOE/D. Cell Metab. 2017;26(5):719–37 e6. doi: 10.1016/j.cmet.2017.08.024 28965825

5. Petan T, Jarc E, Jusovic M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules. 2018;23(8).

6. Dutta A, Sinha DK. Zebrafish lipid droplets regulate embryonic ATP homeostasis to power early development. Open Biol. 2017;7(7).

7. Li X, Li Z, Zhao M, Nie Y, Liu P, Zhu Y, et al. Skeletal Muscle Lipid Droplets and the Athlete's Paradox. Cells. 2019;8(3).

8. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019;20(3):137–55. doi: 10.1038/s41580-018-0085-z 30523332

9. Thiam AR, Beller M. The why, when and how of lipid droplet diversity. J Cell Sci. 2017;130(2):315–24. doi: 10.1242/jcs.192021 28049719

10. Nettebrock NT, Bohnert M. Born this way—Biogenesis of lipid droplets from specialized ER subdomains. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;In press.

11. Agarwal AK, Garg A. Seipin: a mysterious protein. Trends Mol Med. 2004;10(9):440–4. doi: 10.1016/j.molmed.2004.07.009 15350896

12. Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell. 2015;26(4):726–39. doi: 10.1091/mbc.E14-08-1303 25540432

13. Gao Q, Binns DD, Kinch LN, Grishin NV, Ortiz N, Chen X, et al. Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. J Cell Biol. 2017;216(10):3199–217. doi: 10.1083/jcb.201610013 28801319

14. Romanauska A, Kohler A. The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell. 2018;174(3):700–15 e18. doi: 10.1016/j.cell.2018.05.047 29937227

15. Long AP, Manneschmidt AK, VerBrugge B, Dortch MR, Minkin SC, Prater KE, et al. Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic. 2012;13(5):705–14. doi: 10.1111/j.1600-0854.2012.01339.x 22300234

16. Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L, et al. Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1197–204.

17. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol. 2012;2012:282041. doi: 10.1155/2012/282041 22536247

18. Gao Q, Goodman JM. The lipid droplet-a well-connected organelle. Front Cell Dev Biol. 2015;3:49. doi: 10.3389/fcell.2015.00049 26322308

19. Salo VT, Ikonen E. Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol. 2019;57:64–70. doi: 10.1016/ 30476754

20. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546(7656):162–7. doi: 10.1038/nature22369 28538724

21. Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, et al. Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J. 2016;35(24):2699–716. doi: 10.15252/embj.201695170 27879284

22. Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res. 2011;52(12):2159–68. doi: 10.1194/jlr.M017939 21885430

23. Pu J, Ha CW, Zhang S, Jung JP, Huh WK, Liu P. Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell. 2011;2(6):487–96. doi: 10.1007/s13238-011-1061-y 21748599

24. Chang CL, Weigel AV, Ioannou MS, Pasolli HA, Xu CS, Peale DR, et al. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J Cell Biol. 2019;In press.

25. Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF. Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell. 1998;92(4):547–57. doi: 10.1016/s0092-8674(00)80947-2 9491895

26. Arora GK, Tran SL, Rizzo N, Jain A, Welte MA. Temporal control of bidirectional lipid-droplet motion in Drosophila depends on the ratio of kinesin-1 and its co-factor Halo. J Cell Sci. 2016;129(7):1416–28. doi: 10.1242/jcs.183426 26906417

27. Herms A, Bosch M, Reddy BJ, Schieber NL, Fajardo A, Ruperez C, et al. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 2015;6:7176. doi: 10.1038/ncomms8176 26013497

28. Rai P, Kumar M, Sharma G, Barak P, Das S, Kamat SS, et al. Kinesin-dependent mechanism for controlling triglyceride secretion from the liver. Proc Natl Acad Sci U S A. 2017;114(49):12958–63. doi: 10.1073/pnas.1713292114 29158401

29. da Silva AF, Mariotti FR, Maximo V, Campello S. Mitochondria dynamism: of shape, transport and cell migration. Cell Mol Life Sci. 2014;71(12):2313–24. doi: 10.1007/s00018-014-1557-8 24442478

30. Papadopoulos C, Orso G, Mancuso G, Herholz M, Gumeni S, Tadepalle N, et al. Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet. 2015;11(4):e1005149. doi: 10.1371/journal.pgen.1005149 25875445

31. Roll-Mecak A, Vale RD. The Drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol. 2005;15(7):650–5. doi: 10.1016/j.cub.2005.02.029 15823537

32. Errico A, Ballabio A, Rugarli EI. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 2002;11(2):153–63. doi: 10.1093/hmg/11.2.153 11809724

33. Evans KJ, Gomes ER, Reisenweber SM, Gundersen GG, Lauring BP. Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol. 2005;168(4):599–606. doi: 10.1083/jcb.200409058 15716377

34. Shoukier M, Neesen J, Sauter SM, Argyriou L, Doerwald N, Pantakani DV, et al. Expansion of mutation spectrum, determination of mutation cluster regions and predictive structural classification of SPAST mutations in hereditary spastic paraplegia. Eur J Hum Genet. 2009;17(2):187–94. doi: 10.1038/ejhg.2008.147 18701882

35. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 2013;126(3):307–28. doi: 10.1007/s00401-013-1115-8 23897027

36. Riano E, Martignoni M, Mancuso G, Cartelli D, Crippa F, Toldo I, et al. Pleiotropic effects of spastin on neurite growth depending on expression levels. J Neurochem. 2009;108(5):1277–88. doi: 10.1111/j.1471-4159.2009.05875.x 19141076

37. Claudiani P, Riano E, Errico A, Andolfi G, Rugarli EI. Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res. 2005;309(2):358–69. doi: 10.1016/j.yexcr.2005.06.009 16026783

38. Fassier C, Tarrade A, Peris L, Courageot S, Mailly P, Dalard C, et al. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis Model Mech. 2013;6(1):72–83. doi: 10.1242/dmm.008946 22773755

39. Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M, et al. Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem. 2009;110(1):34–44. doi: 10.1111/j.1471-4159.2009.06104.x 19453301

40. Leo L, Weissmann C, Burns M, Kang M, Song Y, Qiang L, et al. Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Hum Mol Genet. 2017;26(12):2321–34. doi: 10.1093/hmg/ddx125 28398512

41. Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, et al. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics. 2015;290(2):611–22. doi: 10.1007/s00438-014-0944-z 25367283

42. Song G, Kwon CT, Kim SH, Shim Y, Lim C, Koh HJ, et al. The Rice SPOTTED LEAF4 (SPL4) Encodes a Plant Spastin That Inhibits ROS Accumulation in Leaf Development and Functions in Leaf Senescence. Front Plant Sci. 2018;9:1925. doi: 10.3389/fpls.2018.01925 30666263

43. Matsushita-Ishiodori Y, Yamanaka K, Ogura T. The C. elegans homologue of the spastic paraplegia protein, spastin, disassembles microtubules. Biochem Biophys Res Commun. 2007;359(1):157–62. doi: 10.1016/j.bbrc.2007.05.086 17531954

44. Chrestian N, Dupre N, Gan-Or Z, Szuto A, Chen S, Venkitachalam A, et al. Clinical and genetic study of hereditary spastic paraplegia in Canada. Neurol Genet. 2017;3(1):e122. doi: 10.1212/NXG.0000000000000122 27957547

45. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518–39. doi: 10.1016/j.expneurol.2014.06.011 24954637

46. Wood JD, Landers JA, Bingley M, McDermott CJ, Thomas-McArthur V, Gleadall LJ, et al. The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo. Hum Mol Genet. 2006;15(18):2763–71. doi: 10.1093/hmg/ddl212 16893913

47. Butler R, Wood JD, Landers JA, Cunliffe VT. Genetic and chemical modulation of spastin-dependent axon outgrowth in zebrafish embryos indicates a role for impaired microtubule dynamics in hereditary spastic paraplegia. Dis Model Mech. 2010;3(11–12):743–51. doi: 10.1242/dmm.004002 20829563

48. Jardin N, Giudicelli F, Ten Martin D, Vitrac A, De Gois S, Allison R, et al. BMP- and neuropilin 1-mediated motor axon navigation relies on spastin alternative translation. Development. 2018;145(17).

49. Svenson IK, Ashley-Koch AE, Pericak-Vance MA, Marchuk DA. A second leaky splice-site mutation in the spastin gene. Am J Hum Genet. 2001;69(6):1407–9. doi: 10.1086/324593 11704932

50. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007;292(1):C125–36. doi: 10.1152/ajpcell.00247.2006 16971499

51. Koshimizu E, Imamura S, Qi J, Toure J, Valdez DM Jr., Carr CE, et al. Embryonic senescence and laminopathies in a progeroid zebrafish model. PLoS One. 2011;6(3):e17688.

52. Holtta-Vuori M, Salo VT, Ohsaki Y, Suster ML, Ikonen E. Alleviation of seipinopathy-related ER stress by triglyceride storage. Hum Mol Genet. 2013;22(6):1157–66. doi: 10.1093/hmg/dds523 23250914

53. Velazquez AP, Tatsuta T, Ghillebert R, Drescher I, Graef M. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J Cell Biol. 2016;212(6):621–31. doi: 10.1083/jcb.201508102 26953354

54. Li J, Chen Z, Gao LY, Colorni A, Ucko M, Fang S, et al. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo. Mech Dev. 2015;137:33–44. doi: 10.1016/j.mod.2015.04.001 25892297

55. Molon A, Di Giovanni S, Chen YW, Clarkson PM, Angelini C, Pegoraro E, et al. Large-scale disruption of microtubule pathways in morphologically normal human spastin muscle. Neurology. 2004;62(7):1097–104. doi: 10.1212/01.wnl.0000118204.90814.5a 15079007

56. Ochoa CD, Stevens T, Balczon R. Cold exposure reveals two populations of microtubules in pulmonary endothelia. Am J Physiol Lung Cell Mol Physiol. 2011;300(1):L132–8. doi: 10.1152/ajplung.00185.2010 20971804

57. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015;522(7555):231–5. doi: 10.1038/nature14408 26040712

58. Lumb JH, Connell JW, Allison R, Reid E. The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim Biophys Acta. 2012;1823(1):192–7. doi: 10.1016/j.bbamcr.2011.08.010 21888932

59. Plaud C, Joshi V, Kajevu N, Pous C, Curmi PA, Burgo A. Functional differences of short and long isoforms of spastin harboring missense mutation. Dis Model Mech. 2018;11(9).

60. Wang S, Tukachinsky H, Romano FB, Rapoport TA. Cooperation of the ER-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. Elife. 2016;5.

61. Moss TJ, Andreazza C, Verma A, Daga A, McNew JA. Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc Natl Acad Sci U S A. 2011;108(27):11133–8. doi: 10.1073/pnas.1105056108 21690399

62. Yalcin B, Zhao L, Stofanko M, O'Sullivan NC, Kang ZH, Roost A, et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. Elife. 2017;6.

63. Beetz C, Koch N, Khundadze M, Zimmer G, Nietzsche S, Hertel N, et al. A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. J Clin Invest. 2013;123(10):4273–82. doi: 10.1172/JCI65665 24051375

64. Park SH, Zhu PP, Parker RL, Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest. 2010;120(4):1097–110. doi: 10.1172/JCI40979 20200447

65. Eastman SW, Yassaee M, Bieniasz PD. A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. J Cell Biol. 2009;184(6):881–94. doi: 10.1083/jcb.200808041 19307600

66. Falk J, Rohde M, Bekhite MM, Neugebauer S, Hemmerich P, Kiehntopf M, et al. Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum Mutat. 2014;35(4):497–504. doi: 10.1002/humu.22521 24478229

67. Klemm RW, Norton JP, Cole RA, Li CS, Park SH, Crane MM, et al. A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Rep. 2013;3(5):1465–75. doi: 10.1016/j.celrep.2013.04.015 23684613

68. Zelnik ID, Ventura AE, Kim JL, Silva LC, Futerman AH. The role of ceramide in regulating endoplasmic reticulum function. Biochim Biophys Acta Mol Cell Biol Lipids. 2019.

69. Patel D, Witt SN. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxid Med Cell Longev. 2017;2017:4829180. doi: 10.1155/2017/4829180 28785375

70. Lareau LF, Green RE, Bhatnagar RS, Brenner SE. The evolving roles of alternative splicing. Curr Opin Struct Biol. 2004;14(3):273–82. doi: 10.1016/ 15193306

71. Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull. 2016;126(Pt 3):238–92. doi: 10.1016/j.brainresbull.2016.08.018 27615390

72. Matsushita-Ishiodori Y, Yamanaka K, Hashimoto H, Esaki M, Ogura T. Conserved aromatic and basic amino acid residues in the pore region of Caenorhabditis elegans spastin play critical roles in microtubule severing. Genes Cells. 2009;14(8):925–40. doi: 10.1111/j.1365-2443.2009.01320.x 19619244

73. Salinas S, Carazo-Salas RE, Proukakis C, Cooper JM, Weston AE, Schiavo G, et al. Human spastin has multiple microtubule-related functions. J Neurochem. 2005;95(5):1411–20. doi: 10.1111/j.1471-4159.2005.03472.x 16219033

74. Svenson IK, Ashley-Koch AE, Gaskell PC, Riney TJ, Cumming WJ, Kingston HM, et al. Identification and expression analysis of spastin gene mutations in hereditary spastic paraplegia. Am J Hum Genet. 2001;68(5):1077–85. doi: 10.1086/320111 11309678

75. Solowska JM, Morfini G, Falnikar A, Himes BT, Brady ST, Huang D, et al. Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci. 2008;28(9):2147–57. doi: 10.1523/JNEUROSCI.3159-07.2008 18305248

76. Hamada T, Ueda H, Kawase T, Hara-Nishimura I. Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. Plant Physiol. 2014;166(4):1869–76. doi: 10.1104/pp.114.252320 25367857

77. Onal G, Kutlu O, Gozuacik D, Dokmeci Emre S. Lipid Droplets in Health and Disease. Lipids Health Dis. 2017;16(1):128. doi: 10.1186/s12944-017-0521-7 28662670

78. Solowska JM, Garbern JY, Baas PW. Evaluation of loss of function as an explanation for SPG4-based hereditary spastic paraplegia. Hum Mol Genet. 2010;19(14):2767–79. doi: 10.1093/hmg/ddq177 20430936

79. Solowska JM D'Rozario M, Jean DC, Davidson MW, Marenda DR, Baas PW. Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics. J Neurosci. 2014;34(5):1856–67. doi: 10.1523/JNEUROSCI.3309-13.2014 24478365

80. Johnson MR, Stephenson RA, Ghaemmaghami S, Welte MA. Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos. Elife. 2018;7.

81. Winsor J, Machi U, Han Q, Hackney DD, Lee TH. GTP hydrolysis promotes disassembly of the atlastin crossover dimer during ER fusion. J Cell Biol. 2018;217(12):4184–98. doi: 10.1083/jcb.201805039 30249723

82. Yao L, Xie D, Geng L, Shi D, Huang J, Wu Y, et al. REEP5 (Receptor Accessory Protein 5) Acts as a Sarcoplasmic Reticulum Membrane Sculptor to Modulate Cardiac Function. J Am Heart Assoc. 2018;7(3).

83. Lee M, Paik SK, Lee MJ, Kim YJ, Kim S, Nahm M, et al. Drosophila Atlastin regulates the stability of muscle microtubules and is required for synapse development. Dev Biol. 2009;330(2):250–62. doi: 10.1016/j.ydbio.2009.03.019 19341724

84. Pennings M, Schouten MI, van Gaalen J, Meijer RPP, de Bot ST, Kriek M, et al. KIF1A variants are a frequent cause of autosomal dominant hereditary spastic paraplegia. Eur J Hum Genet. 2020;28(1):40–9. doi: 10.1038/s41431-019-0497-z 31488895

85. Guardia CM, Farias GG, Jia R, Pu J, Bonifacino JS. BORC Functions Upstream of Kinesins 1 and 3 to Coordinate Regional Movement of Lysosomes along Different Microtubule Tracks. Cell Rep. 2016;17(8):1950–61. doi: 10.1016/j.celrep.2016.10.062 27851960

86. Wozniak MJ, Bola B, Brownhill K, Yang YC, Levakova V, Allan VJ. Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells. J Cell Sci. 2009;122(Pt 12):1979–89. doi: 10.1242/jcs.041962 19454478

87. Vega AL, Yuan C, Votaw VS, Santana LF. Dynamic changes in sarcoplasmic reticulum structure in ventricular myocytes. J Biomed Biotechnol. 2011;2011:382586. doi: 10.1155/2011/382586 22131804

88. Lu J, Rashid F, Byrne PC. The hereditary spastic paraplegia protein spartin localises to mitochondria. J Neurochem. 2006;98(6):1908–19. doi: 10.1111/j.1471-4159.2006.04008.x 16945107

89. Renvoise B, Malone B, Falgairolle M, Munasinghe J, Stadler J, Sibilla C, et al. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Hum Mol Genet. 2016;25(23):5111–25. doi: 10.1093/hmg/ddw315 27638887

90. Montenegro G, Rebelo AP, Connell J, Allison R, Babalini C, D'Aloia M, et al. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest. 2012;122(2):538–44. doi: 10.1172/JCI60560 22232211

91. Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama KI. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 2014;289(19):12946–61. doi: 10.1074/jbc.M113.528687 24668814

92. Yamamoto Y, Yoshida A, Miyazaki N, Iwasaki K, Sakisaka T. Arl6IP1 has the ability to shape the mammalian ER membrane in a reticulon-like fashion. Biochem J. 2014;458(1):69–79. doi: 10.1042/BJ20131186 24262037

93. Mancuso G, Barth E, Crivello P, Rugarli EI. Alternative splicing of Spg7, a gene involved in hereditary spastic paraplegia, encodes a variant of paraplegin targeted to the endoplasmic reticulum. PLoS One. 2012;7(5):e36337. doi: 10.1371/journal.pone.0036337 22563492

94. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. doi: 10.1002/aja.1002030302 8589427

95. Arribat Y, Mysiak KS, Lescouzeres L, Boizot A, Ruiz M, Rossel M, et al. Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy. J Clin Invest. 2019.

96. Arribat Y, Broskey NT, Greggio C, Boutant M, Conde Alonso S, Kulkarni SS, et al. Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training. Acta Physiol (Oxf). 2019;225(2):e13179.

97. Vallone D, Santoriello C, Gondi SB, Foulkes NS. Basic protocols for zebrafish cell lines: maintenance and transfection. Methods Mol Biol. 2007;362:429–41. doi: 10.1007/978-1-59745-257-1_35 17417032

98. Cohen S, Valm AM, Lippincott-Schwartz J. Multispectral Live-Cell Imaging. Current protocols in cell biology. 2018;79(1):e46. doi: 10.1002/cpcb.46 29924484

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 4

Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se