-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaDNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways
Autoři: Peng Gao aff001; Dan Wang aff002; Meiyue Liu aff002; Siyuan Chen aff002; Zhao Yang aff002; Jie Zhang aff003; Huan Wang aff002; Yi Niu aff002; Wei Wang aff001; Jilong Yang aff001; Guogui Sun aff002
Působiště autorů: Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Me... aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medic aff001; Department of Radiation Oncology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China aff002; Department of Pathology, North China University of Science and Technology Affiliated People's Hospital, Tangshan, China aff003
Vyšlo v časopise: DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways. PLoS Genet 16(4): e32767. doi:10.1371/journal.pgen.1008592
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008592Souhrn
Exosomal microRNAs (miRNAs) have been recently shown to play vital regulatory and communication roles in cancers. In this study, we showed that the expression levels of miR-652-5p in tumour tissues and serum samples of oesophageal squamous cell carcinoma (OSCC) patients were lower compared to non-tumorous tissues and serum samples from healthy subjects, respectively. Decreased expression of miR-652-5p was correlated with TNM stages, lymph node metastasis, and short overall survival (OS). More frequent CpG sites hypermethylation in the upstream of miR-652-5p was found in OSCC tissues compared to adjacent normal tissues. Subsequently, miR-652-5p downregulation promoted the proliferation and metastasis of OSCC, and regulated cell cycle both in cells and in vivo. The dual-luciferase reporter assay confirmed that poly (ADP-ribose) glycohydrolase (PARG) and vascular endothelial growth factor A (VEGFA) were the direct targets of miR-652-5p. Moreover, the delivery of miR-652-5p agomir suppressed tumour growth and metastasis, and inhibited the protein expressions of PARG and VEGFA in nude mice. Taken together, our findings provide novel insight into the molecular mechanism underlying OSCC pathogenesis.
Klíčová slova:
Biomarkers – Cancer detection and diagnosis – DNA methylation – Exosomes – Metastasis – MicroRNAs – Mouse models – Small interfering RNAs
Zdroje
1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016; 66(2):115–32. doi: 10.3322/caac.21338 26808342
2. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, Maclntyre MF, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1 : 505–27. doi: 10.1001/jamaoncol.2015.0735 26181261
3. Barber TW, Duong CP, Leong T, Bressel M, Drummond EG, Hicks RJ. 18F-FDG PET/CT has a high impact on patient management and provides powerful prognosticstratification in the primary staging of esophageal cancer: a prospective study with maturesurvival data. J Nucl Med. 2012; 53(6): 864–71. doi: 10.2967/jnumed.111.101568 22582047
4. Niwa Y, Koike M, Fujimoto Y, Oya H, Iwata N, Nishio N, et al.Salvage pharyngolaryngectomy with total esophagectomy following definitive chemoradiotherapy. Dis Esophagus. 2016;29(6):598–602. doi: 10.1111/dote.12362 26338205
5. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, et al.Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarkerfor oesophageal squamous cell carcinoma. Br J Cancer. 2013; 108(3): 644–52. doi: 10.1038/bjc.2013.8 23361059
6. Dragomir M, Mafra ACP, Dias SMG, Vasilescu C, Calin GA. Using microRNA Networks to Understand Cancer. Int J Mol Sci. 2018;19(7):E1871. doi: 10.3390/ijms19071871 29949872
7. Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018; 17(1):64. doi: 10.1186/s12943-018-0765-5 29471827
8. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8. doi: 10.1073/pnas.0804549105 18663219
9. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28(10): 1721–6. doi: 10.1200/JCO.2009.24.9342 20194856
10. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010; 251(3): 499–505. doi: 10.1097/SLA.0b013e3181cc939f 20134314
11. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al.Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010; 102(7): 1174–9. doi: 10.1038/sj.bjc.6605608 20234369
12. Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer. 2016;15(1):48. doi: 10.1186/s12943-016-0536-0 27343009
13. Lu J, Liu QH, Wang F, Tan JJ, Deng YQ, et al.Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2018;37(1):147. doi: 10.1186/s13046-018-0814-3 30001734
14. EL AS, Mager I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57. doi: 10.1038/nrd3978 23584393
15. Sun Z, Shi K, Yang S, Liu J, Zhou Q, et al.Effect of exosomal miRNA on cancer biology and clinical applications.Mol Cancer. 2018;17(1):147. doi: 10.1186/s12943-018-0897-7 30309355
16. Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93. doi: 10.1016/j.molmed.2014.03.002 24703619
17. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, Furuta K, et al.Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014;9(4):e92921. doi: 10.1371/journal.pone.0092921 24705249
18. Matsui D, Zaidi AH, Martin SA, Omstead AN, Kosovec JE, Huleihel L, et al.Primary tumor microRNA signature predicts recurrence and survival in patients with locallyadvanced esophageal adenocarcinoma. Oncotarget. 2016;7(49):81281–91. doi: 10.18632/oncotarget.12832 27793030
19. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9(6):654–9. doi: 10.1038/ncb1596 17486113
20. Nong K, Wang W, Niu X, Hu B, Ma C, Bai Y, et al.Hepatoprotective effect of exosomes from human-induced pluripotent stem cell derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy. 2016; 18(12): 1548–59. doi: 10.1016/j.jcyt.2016.08.002 27592404
21. Shiino S, Matsuzaki J, Shimomura A, Kawauchi J, Takizawa S, Sakamoto H, et al.Serum miRNA-based prediction of axillary lymph node metastasis in breast cancer. Clin Cancer Res. 2019;25 : 1817–27. doi: 10.1158/1078-0432.CCR-18-1414 30482779
22. Lovat F, Fassan M, Sacchi D, Ranganathan P, Palamarchuk A, Bill M, et al.Knockout of both miR-15/16 loci induces acute myeloid leukemia. Proc Natl Acad Sci U S A. 2018;115(51):13069–74. doi: 10.1073/pnas.1814980115 30478046
23. Xiao S, Yang M, Yang H, Chang R, Fang F, Yang L. miR-330-5p targets SPRY2 to promote hepatocellular carcinoma progression via MAPK/ERK signaling. Oncogenesis. 2018;7(11):90. doi: 10.1038/s41389-018-0097-8 30464168
24. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al.Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018; 17(1): 147. doi: 10.1186/s12943-018-0897-7 30309355
25. Liu Y, Wang X, Jiang X, Yan P, Zhan L, Zhu H, et al. Tumor-suppressive microRNA-10a inhibits cell proliferation and metastasis by targeting Tiam1 in esophageal squamous cell carcinoma. J Cell Biochem. 2018.
26. Chen M, Xia Y, Tan Y, Jiang G, Jin H, Chen Y. Downregulation of microRNA-370 in esophageal squamous-cell carcinoma is associated with cancer progression and promotes cancer cell proliferation via upregulating PIN1. Gene. 2018;661 : 68–77. doi: 10.1016/j.gene.2018.03.090 29605603
27. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: biological properties and therapeutic potential. Front Genet. 2012;3 : 56. doi: 10.3389/fgene.2012.00056 22529849
28. Ogata-Kawata H, Izumiya M, Kurioka D, Honma Y, Yamada Y, et al. Circulating Exosomal microRNAs as biomarkers of Colon Cancer. PLoS One. 2014;9:e92921. doi: 10.1371/journal.pone.0092921 24705249
29. Kobayashi M, Sawada K, Nakamura K, Yoshimura A, Miyamoto M, Shimizu A, et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 2018;11(1):81. doi: 10.1186/s13048-018-0458-0 30219071
30. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer.2010;102(7): 1174–9. doi: 10.1038/sj.bjc.6605608 20234369
31. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21. doi: 10.1016/j.ygyno.2008.04.033 18589210
32. Hamano R, Miyata H, Yamasaki M, Kurokawa Y, Hara J, Moon JH, et al. Overexpression of miR-200c Induces Chemoresistance in Esophageal Cancers Mediated Through Activation of the Akt Signaling Pathway. Clin Cancer Res. 2011,17(9):3029–38. doi: 10.1158/1078-0432.CCR-10-2532 21248297
33. Akanuma N, Hoshino I, Akutsu Y, Murakami K, Isozaki Y, Maruyama T, et al. MicroRNA-133a regulates the mRNAs of two invadopodia-related proteins, FSCN1 and MMP14, in esophageal cance. Br J Cancer. 2014,110(1):189–98. doi: 10.1038/bjc.2013.676 24196787
34. Gong H, Song L, Lin C, Liu A, Lin X, Wu J, et al. Downregulation of miR-138 Sustains NF-kB Activation and Promotes Lipid Raft Formation in Esophageal Squamous Cell Carcinoma. Clin Cancer Res. 2013,19(5):1083–93. doi: 10.1158/1078-0432.CCR-12-3169 23319823
35. Zhang Q, Gan H, Song W, Chai D, Wu S. MicroRNA-145 promotes esophageal cancer cells proliferation and metastasis by targeting SMAD5.Scand J Gastroenterol. 2018;53(7):769–76. doi: 10.1080/00365521.2018.1476913 29852786
36. Li Y, He Q, Wen X, Hong X, Yang X, Tang X, et al. EZH2-DNMT1-mediated epigenetic silencing of miR-142-3p promotes metastasis through targeting ZEB2 in nasopharyngeal carcinoma. Cell Death Differ. 2019;26 : 1089–1106. doi: 10.1038/s41418-018-0208-2 30353102
37. Guo B, Zhang J, Li Q, Zhao Z, Wang W, Zhou K, et al.Hypermethylation of miR-338-3p and Impact of its Suppression on Cell Metastasis Through N-Cadherin Accumulation at the Cell -Cell Junction and Degradation of MMP in Gastric Cancer. Cell Physiol Biochem. 2018;50(2):411–25. doi: 10.1159/000494153 30308487
38. Merkerova MD, Remesova H, Krejcik Z, Loudova N, Hrustincova A, Szikszai K, et al. Relationship between Altered miRNA Expression and DNA Methylation of the DLK1-DIO3 Region in Azacitidine-Treated Patients with Myelodysplastic Syndromes and Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Cells. 2018;7(9): E138. doi: 10.3390/cells7090138 30223454
39. Yue J, Lv D, Wang C, Li L, Zhao Q, Chen H,et al.Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene. 2018;37(31):4300–12. doi: 10.1038/s41388-018-0276-2 29717264
40. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013 21376230
41. Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136(4):586–91. doi: 10.1016/j.cell.2009.02.005 19239879
42. Li B, Xu WW, Han L, Chan KT, Tsao SW, Lee NPY, et al. MicroRNA-377 suppresses initiation and progression of esophageal cancer by inhibiting CD133 and VEGF. Oncogene. 2017;36(28):3986–4000. doi: 10.1038/onc.2017.29 28288140
43. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–58. doi: 10.1038/nrc1886 16723991
44. Zhang B, Zhang Z, Li L, Qin YR, Liu H, Jiang C, et al. TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nat Commun. 2018;9(1):1423 doi: 10.1038/s41467-018-03716-9 29650964
45. Feng J, Qi B, Guo L, Chen LY, Wei XF, Liu YZ, et al. miR-382 functions as a tumor suppressor against esophageal squamous cell carcinoma. World J Gastroenterol. 2017;23(23):4243–51. doi: 10.3748/wjg.v23.i23.4243 28694664
46. Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P,et al.The structure and catalytic mechanism ofa poly(ADP-ribose) glycohydrolase. Nature. 2011; 477(7366):616–20. doi: 10.1038/nature10404 21892188
47. Erdélyi K, Bai P, Kovács I, Szabó E, Mocsár G, Kakuk A, et al.Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J. 2009; 23(10):3553–63. doi: 10.1096/fj.09-133264 19571039
48. Shirai H, Poetsch AR, Gunji A, Maeda D, Fujimori H, Fujihara H, et al. PARG dysfunction enhances DNA double strand break formation in S-phase after alkylation DNA damage and augments different cell death pathways. Cell Death Dis. 2013; 4:e656. doi: 10.1038/cddis.2013.133 23744356
49. Fauzee NJ, Li Q, Wang YL, Pan J. Silencing Poly (ADP-Ribose) glycohydrolase (PARG) expression inhibits growth of human colon cancer cells in vitro via PI3K/Akt/NFkappa-B pathway. Pathol Oncol Res. 2012; 18(2):191–9. doi: 10.1007/s12253-011-9428-1 21713600
50. Li Q, Li M, Wang YL, Fauzee NJ, Yang Y, Pan J, et al. RNA interference of PARG could inhibit the metastatic potency of colon carcinoma cells via PI3-kinase/Akt pathway. Cell Physiol Biochem. 2012; 29(3–4):361–72. doi: 10.1159/000338491 22508044
51. Li X, Li X, Zhu Z, Huang P, Zhuang Z, Liu J, et al.Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced CellTransformation. PLoS One. 2016;11(3):e0151172. doi: 10.1371/journal.pone.0151172 27003318
52. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298–307. doi: 10.1038/nature10144 21593862
53. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer 2013; 13(12): 871–82. doi: 10.1038/nrc3627 24263190
54. Hu Y, Qiu Y, Yagüe E, Ji W, Liu J, Zhang J. miRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death Dis. 2016;7(6):e2291. doi: 10.1038/cddis.2016.194 27362808
55. Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, et al. MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett. 2013; 333(2): 159–69. doi: 10.1016/j.canlet.2013.01.028 23352645
56. Ghosh A, Dasgupta D, Ghosh A, Roychoudhury S, Kumar D, Gorain M, et al.MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis. 2017;8(3):e2706. doi: 10.1038/cddis.2017.123 28358369
Článek Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathwayČlánek Inference of past demography, dormancy and self-fertilization rates from whole genome sequence dataČlánek Eliciting priors and relaxing the single causal variant assumption in colocalisation analysesČlánek Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacteriumČlánek The transcription and export complex THO/TREX contributes to transcription termination in plantsČlánek Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere cappingČlánek Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 4- Nakupování jako nemoc. Jaké jsou její příčiny a možnosti terapie?
- Eutanazie na žádost pacientů s demencí? Odborná polemika je stále živá
- Co nabízí horská medicína pro výzkum i klinickou praxi?
- „Jednohubky“ z klinického výzkumu – 2026/1
- 4× stručně a aktuálně k možnostem preventivních strategií – „jednohubky“ z klinického výzkumu 2026/2
-
Všechny články tohoto čísla
- Dynamic localization of SPO11-1 and conformational changes of meiotic axial elements during recombination initiation of maize meiosis
- The plant mobile domain proteins MAIN and MAIL1 interact with the phosphatase PP7L to regulate gene expression and silence transposable elements in Arabidopsis thaliana
- Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles
- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways
- Technical and social issues influencing the adoption of preprints in the life sciences
- The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification
- DNA methylation-mediated repression of exosomal miR-652-5p expression promotes oesophageal squamous cell carcinoma aggressiveness by targeting PARG and VEGF pathways
- Is imprinting the result of “friendly fire” by the host defense system?
- The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network
- XPF–ERCC1: Linchpin of DNA crosslink repair
- A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease
- Deconstructing cerebellar development cell by cell
- The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss
- Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans
- Molecular genetics of maternally-controlled cell divisions
- Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders
- Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish
- An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem
- Discovery of novel hepatocyte eQTLs in African Americans
- Loss-of-function tolerance of enhancers in the human genome
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
- Relaxed constraint and functional divergence of the progesterone receptor (PGR) in the human stem-lineage
- Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals
- Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence
- Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids
- Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell
- Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B
- Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway
- Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice
- Inference of past demography, dormancy and self-fertilization rates from whole genome sequence data
- Drosophila NUAK functions with Starvin/BAG3 in autophagic protein turnover
- FANCJ helicase promotes DNA end resection by facilitating CtIP recruitment to DNA double-strand breaks
- Getting clear about the F-word in genomics
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Placental imprinting: Emerging mechanisms and functions
- Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
- Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma
- Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination
- Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium
- Analysis of genes within the schizophrenia-linked 22q11.2 deletion identifies interaction of night owl/LZTR1 and NF1 in GABAergic sleep control
- Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution?
- Quantitative live imaging of Venus::BMAL1 in a mouse model reveals complex dynamics of the master circadian clock regulator
- O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1
- The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling
- The transcription and export complex THO/TREX contributes to transcription termination in plants
- Loss of Cdc13 causes genome instability by a deficiency in replication-dependent telomere capping
- Leveraging gene co-expression patterns to infer trait-relevant tissues in genome-wide association studies
- Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos
- Correction: Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease
- C9orf72/ALFA-1 controls TFEB/HLH-30-dependent metabolism through dynamic regulation of Rag GTPases
- Inositol 1,4,5-trisphosphate receptors are essential for fetal-maternal connection and embryo viability
- ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range
- The Drosophila actin nucleator DAAM is essential for left-right asymmetry
- Translesion synthesis polymerases are dispensable for C. elegans reproduction but suppress genome scarring by polymerase theta-mediated end joining
- Juvenile hormone suppresses aggregation behavior through influencing antennal gene expression in locusts
- UNBRANCHED3 Expression and Inflorescence Development is Mediated by UNBRANCHED2 and the Distal Enhancer, KRN4, in Maize
- Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae
- Long noncoding RNA PAHAL modulates locust behavioural plasticity through the feedback regulation of dopamine biosynthesis
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- High expression in maize pollen correlates with genetic contributions to pollen fitness as well as with coordinated transcription from neighboring transposable elements
- The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis
- Molecular genetics of maternally-controlled cell divisions
- Spastin mutations impair coordination between lipid droplet dispersion and reticulum
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání