Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice

Autoři: Luca Madaro aff001;  Alessio Torcinaro aff002;  Marco De Bardi aff001;  Federica F. Contino aff002;  Mattia Pelizzola aff004;  Giuseppe R. Diaferia aff005;  Giulia Imeneo aff002;  Marina Bouchè aff006;  Pier Lorenzo Puri aff007;  Francesca De Santa aff002
Působiště autorů: IRCCS Fondazione Santa Lucia (FSL), Rome, Italy aff001;  Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy aff002;  Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Rome, Italy aff003;  Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy aff004;  IRCCS European Institute of Oncology (IEO), Milan, Italy aff005;  DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy aff006;  Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America aff007
Vyšlo v časopise: Macrophages fine tune satellite cell fate in dystrophic skeletal muscle of mdx mice. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008408
Kategorie: Research Article
doi: 10.1371/journal.pgen.1008408


Satellite cells (SCs) are muscle stem cells that remain quiescent during homeostasis and are activated in response to acute muscle damage or in chronic degenerative conditions such as Duchenne Muscular Dystrophy. The activity of SCs is supported by specialized cells which either reside in the muscle or are recruited in regenerating skeletal muscles, such as for instance macrophages (MΦs). By using a dystrophic mouse model of transient MΦ depletion, we describe a shift in identity of muscle stem cells dependent on the crosstalk between MΦs and SCs. Indeed MΦ depletion determines adipogenic conversion of SCs and exhaustion of the SC pool leading to an exacerbated dystrophic phenotype. The reported data could also provide new insights into therapeutic approaches targeting inflammation in dystrophic muscles.

Klíčová slova:

Cell differentiation – Cell staining – DAPI staining – Mouse models – Muscle differentiation – Nuclear staining – Skeletal muscles – Muscle regeneration


1. Dalkilic I, Kunkel LM. Muscular dystrophies: genes to pathogenesis. Curr Opin Genet Dev [Internet]. 2003 Jun;13(3):231–8. Available from: doi: 10.1016/s0959-437x(03)00048-0

2. Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, Grange RW. Dysregulated intracellular signaling and inflammatory gene expression during initial disease onset in Duchenne muscular dystrophy. Am J Phys Med Rehabil [Internet]. 2009 Jun;88(6):502–22. Available from: doi: 10.1097/PHM.0b013e3181a5a24f 19454857

3. Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle [Internet]. 2011 May 4;1(1):21. Available from: doi: 10.1186/2044-5040-1-21

4. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol [Internet]. 1961 Feb;9:493–5. Available from: doi: 10.1083/jcb.9.2.493

5. Wosczyna MN, Rando TA. A Muscle Stem Cell Support Group: Coordinated Cellular Responses in Muscle Regeneration. Dev Cell [Internet]. 2018;46(2):135–43. Available from: doi: 10.1016/j.devcel.2018.06.018

6. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med [Internet]. 2014 Oct;20(10):1182–6. Available from: doi: 10.1038/nm.3656

7. Cosgrove BD, Gilbert PM, Porpiglia E, Mourkioti F, Lee SP, Corbel SY, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med [Internet]. 2014 Mar;20(3):255–64. Available from: doi: 10.1038/nm.3464

8. Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol [Internet]. 2016;17(5):267–79. Available from: doi: 10.1038/nrm.2016.7

9. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med [Internet]. 2015 Dec;21(12):1455–63. Available from: doi: 10.1038/nm.3990

10. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science [Internet]. 2007 Aug 10;317(5839):807–10. Available from: doi: 10.1126/science.1144090

11. Biressi S, Miyabara EH, Gopinath SD, Carlig PMM, Rando TA. A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice. Sci Transl Med [Internet]. 2014 Dec 17;6(267):267ra176. Available from: doi: 10.1126/scitranslmed.3008411

12. Pessina P, Kharraz Y, Jardí M, Fukada S, Serrano AL, Perdiguero E, et al. Fibrogenic Cell Plasticity Blunts Tissue Regeneration and Aggravates Muscular Dystrophy. Stem cell reports [Internet]. 2015 Jun 9;4(6):1046–60. Available from: doi: 10.1016/j.stemcr.2015.04.007

13. Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol [Internet]. 2010 Feb;12(2):153–63. Available from: doi: 10.1038/ncb2015

14. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol [Internet]. 2010 Feb;12(2):143–52. Available from: doi: 10.1038/ncb2014

15. Mounier R, Chrétien F, Chazaud B. Blood vessels and the satellite cell niche. Curr Top Dev Biol [Internet]. 2011;96:121–38. Available from: doi: 10.1016/B978-0-12-385940-2.00005-X

16. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med [Internet]. 2007 May 14;204(5):1057–69. Available from: doi: 10.1084/jem.20070075

17. Chazaud B, Brigitte M, Yacoub-Youssef H, Arnold L, Gherardi R, Sonnet C, et al. Dual and beneficial roles of macrophages during skeletal muscle regeneration. Exerc Sport Sci Rev [Internet]. 2009 Jan;37(1):18–22. Available from: doi: 10.1097/JES.0b013e318190ebdb

18. De Santa F, Vitiello L, Torcinaro A, Ferraro E. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxid Redox Signal [Internet]. 2018 Oct 9; Available from:

19. Tidball JG. Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol [Internet]. 2017 Mar;17(3):165–78. Available from: doi: 10.1038/nri.2016.150

20. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol [Internet]. 2010 May;298(5):R1173–87. Available from: doi: 10.1152/ajpregu.00735.2009

21. Juban G, Chazaud B. Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Lett [Internet]. 2017;591(19):3007–21. Available from: doi: 10.1002/1873-3468.12703

22. Summan M, Warren GL, Mercer RR, Chapman R, Hulderman T, Van Rooijen N, et al. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol [Internet]. 2006 Jun;290(6):R1488–95. Available from: doi: 10.1152/ajpregu.00465.2005

23. Contreras-Shannon V, Ochoa O, Reyes-Reyna SM, Sun D, Michalek JE, Kuziel WA, et al. Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2-/- mice following ischemic injury. Am J Physiol Cell Physiol [Internet]. 2007 Feb;292(2):C953–67. Available from: doi: 10.1152/ajpcell.00154.2006

24. Shireman PK, Contreras-Shannon V, Ochoa O, Karia BP, Michalek JE, McManus LM. MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration. J Leukoc Biol [Internet]. 2007 Mar;81(3):775–85. Available from: doi: 10.1189/jlb.0506356

25. Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, et al. Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res [Internet]. 2008 Oct 15;314(17):3232–44. Available from: doi: 10.1016/j.yexcr.2008.08.008

26. Wang H, Melton DW, Porter L, Sarwar ZU, McManus LM, Shireman PK. Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am J Pathol [Internet]. 2014 Apr;184(4):1167–84. Available from: doi: 10.1016/j.ajpath.2013.12.020

27. Zordan P, Rigamonti E, Freudenberg K, Conti V, Azzoni E, Rovere-Querini P, et al. Macrophages commit postnatal endothelium-derived progenitors to angiogenesis and restrict endothelial to mesenchymal transition during muscle regeneration. Cell Death Dis [Internet]. 2014 Jan 30;5:e1031. Available from: doi: 10.1038/cddis.2013.558

28. Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG. IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J Immunol [Internet]. 2011 Nov 15;187(10):5419–28. Available from: doi: 10.4049/jimmunol.1101267

29. Acharyya S, Sharma SM, Cheng AS, Ladner KJ, He W, Kline W, et al. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy. PLoS One [Internet]. 2010 Aug 30;5(8):e12479. Available from: doi: 10.1371/journal.pone.0012479

30. Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell [Internet]. 2010 Oct 8;7(4):455–69. Available from: doi: 10.1016/j.stem.2010.08.013

31. Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab [Internet]. 2008 Jan;7(1):33–44. Available from: doi: 10.1016/j.cmet.2007.11.011

32. Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, et al. Monocyte/Macrophage-derived IGF-1 Orchestrates Murine Skeletal Muscle Regeneration and Modulates Autocrine Polarization. Mol Ther [Internet]. 2015 Jul;23(7):1189–200. Available from: doi: 10.1038/mt.2015.66

33. Hayashiji N, Yuasa S, Miyagoe-Suzuki Y, Hara M, Ito N, Hashimoto H, et al. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nat Commun [Internet]. 2015 Apr 13;6:6745. Available from: doi: 10.1038/ncomms7745

34. Wehling-Henricks M, Li Z, Lindsey C, Wang Y, Welc SS, Ramos JN, et al. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet [Internet]. 2016;25(12):2465–82. Available from: doi: 10.1093/hmg/ddw111

35. Wehling-Henricks M, Welc SS, Samengo G, Rinaldi C, Lindsey C, Wang Y, et al. Macrophages escape Klotho gene silencing in the mdx mouse model of Duchenne muscular dystrophy and promote muscle growth and increase satellite cell numbers through a Klotho-mediated pathway. Hum Mol Genet [Internet]. 2018 Jan 1;27(1):14–29. Available from: doi: 10.1093/hmg/ddx380

36. Du H, Shih C-H, Wosczyna MN, Mueller AA, Cho J, Aggarwal A, et al. Macrophage-released ADAMTS1 promotes muscle stem cell activation. Nat Commun [Internet]. 2017;8(1):669. Available from: doi: 10.1038/s41467-017-00522-7

37. Varga T, Mounier R, Patsalos A, Gogolák P, Peloquin M, Horvath A, et al. Macrophage PPARγ, a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration. Immunity [Internet]. 2016;45(5):1038–51. Available from: doi: 10.1016/j.immuni.2016.10.016

38. Saclier M, Yacoub-Youssef H, Mackey AL, Arnold L, Ardjoune H, Magnan M, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells [Internet]. 2013 Feb;31(2):384–96. Available from: doi: 10.1002/stem.1288

39. Saclier M, Cuvellier S, Magnan M, Mounier R, Chazaud B. Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS J [Internet]. 2013 Sep;280(17):4118–30. Available from: doi: 10.1111/febs.12166

40. Balaban B, Matthews DJ, Clayton GH, Carry T. Corticosteroid treatment and functional improvement in Duchenne muscular dystrophy: long-term effect. Am J Phys Med Rehabil [Internet]. 2005 Nov;84(11):843–50. Available from: doi: 10.1097/01.phm.0000184156.98671.d0

41. Angelini C. The role of corticosteroids in muscular dystrophy: a critical appraisal. Muscle Nerve [Internet]. 2007 Oct;36(4):424–35. Available from: doi: 10.1002/mus.20812

42. Pichavant C, Aartsma-Rus A, Clemens PR, Davies KE, Dickson G, Takeda S, et al. Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther [Internet]. 2011 May;19(5):830–40. Available from: doi: 10.1038/mt.2011.59

43. Pradhan S, Ghosh D, Srivastava NK, Kumar A, Mittal B, Pandey CM, et al. Prednisolone in Duchenne muscular dystrophy with imminent loss of ambulation. J Neurol [Internet]. 2006 Oct;253(10):1309–16. Available from: doi: 10.1007/s00415-006-0212-1

44. Shieh PB, McIntosh J, Jin F, Souza M, Elfring G, Narayanan S, et al. Deflazacort vs prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: A post hoc analysis from the ACT DMD trial. Muscle Nerve [Internet]. 2018 Jul 20; Available from:

45. Duffield JS, Tipping PG, Kipari T, Cailhier J-F, Clay S, Lang R, et al. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol [Internet]. 2005 Nov;167(5):1207–19. Available from: doi: 10.1016/S0002-9440(10)61209-6

46. Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M, et al. Monocyte/macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res [Internet]. 2007 Mar 30;100(6):884–93. Available from: doi: 10.1161/01.RES.0000260802.75766.00

47. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A [Internet]. 2013 Oct 8;110(41):16474–9. Available from: doi: 10.1073/pnas.1307680110

48. Günther S, Kim J, Kostin S, Lepper C, Fan C-M, Braun T. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell [Internet]. 2013 Nov 7;13(5):590–601. Available from: doi: 10.1016/j.stem.2013.07.016

49. Pasut A, Chang NC, Gurriaran-Rodriguez U, Faulkes S, Yin H, Lacaria M, et al. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation. Cell Rep [Internet]. 2016;16(2):333–43. Available from: doi: 10.1016/j.celrep.2016.06.001

50. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature [Internet]. 2008 Aug 21;454(7207):961–7. Available from: doi: 10.1038/nature07182

51. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature [Internet]. 2009 Aug 27;460(7259):1154–8. Available from: doi: 10.1038/nature08262

52. Wang C, Liu W, Nie Y, Qaher M, Horton HE, Yue F, et al. Loss of MyoD Promotes Fate Transdifferentiation of Myoblasts Into Brown Adipocytes. EBioMedicine [Internet]. 2017 Feb;16:212–23. Available from: doi: 10.1016/j.ebiom.2017.01.015

53. An Y, Wang G, Diao Y, Long Y, Fu X, Weng M, et al. A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Dev Cell [Internet]. 2017;41(4):382–391.e5. Available from: doi: 10.1016/j.devcel.2017.04.012

54. Pan D, Huang L, Zhu LJ, Zou T, Ou J, Zhou W, et al. Jmjd3-Mediated H3K27me3 Dynamics Orchestrate Brown Fat Development and Regulate White Fat Plasticity. Dev Cell [Internet]. 2015 Dec 7;35(5):568–83. Available from: doi: 10.1016/j.devcel.2015.11.002

55. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet [Internet]. 2011 Feb 15;20(4):790–805. Available from: doi: 10.1093/hmg/ddq523

56. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol [Internet]. 2012 Oct 1;189(7):3669–80. Available from: doi: 10.4049/jimmunol.1103180

57. Nitahara-Kasahara Y, Hayashita-Kinoh H, Chiyo T, Nishiyama A, Okada H, Takeda S, et al. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet [Internet]. 2014 Aug 1;23(15):3990–4000. Available from: doi: 10.1093/hmg/ddu113

58. Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci [Internet]. 2004 Oct 15;117(Pt 22):5393–404. Available from: doi: 10.1242/jcs.01419

59. Giordani L, He GJ, Negroni E, Sakai H, Law JYC, Siu MM, et al. High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Mol Cell [Internet]. 2019 May 2;74(3):609–621.e6. Available from: doi: 10.1016/j.molcel.2019.02.026

60. Arecco N, Clarke CJ, Jones FK, Simpson DM, Mason D, Beynon RJ, et al. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation. Sci Rep [Internet]. 2016;6:24708. Available from: doi: 10.1038/srep24708

61. Shen W, Li Y, Tang Y, Cummins J, Huard J. NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am J Pathol [Internet]. 2005 Oct;167(4):1105–17. Available from: doi: 10.1016/S0002-9440(10)61199-6

62. Tierney MT, Stec MJ, Rulands S, Simons BD, Sacco A. Muscle Stem Cells Exhibit Distinct Clonal Dynamics in Response to Tissue Repair and Homeostatic Aging. Cell Stem Cell [Internet]. 2018;22(1):119–127.e3. Available from: doi: 10.1016/j.stem.2017.11.009

63. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc [Internet]. 2014 Jan;9(1):171–81. Available from: doi: 10.1038/nprot.2014.006

64. Picelli S, Björklund AK, Reinius B, Sagasser S, Winberg G, Sandberg R. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res [Internet]. 2014 Dec;24(12):2033–40. Available from: doi: 10.1101/gr.177881.114

65. Bianchi V, Ceol A, Ogier AGE, de Pretis S, Galeota E, Kishore K, et al. Integrated Systems for NGS Data Management and Analysis: Open Issues and Available Solutions. Front Genet [Internet]. 2016;7:75. Available from: doi: 10.3389/fgene.2016.00075

66. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res [Internet]. 2007 Jul;35(Web Server issue):W169–75. Available from: doi: 10.1093/nar/gkm415

67. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc [Internet]. 2009;4(1):44–57. Available from: doi: 10.1038/nprot.2008.211

Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics

2019 Číslo 10

Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se