Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States
Autoři:
Jonathan K. Richards aff001; Eva H. Stukenbrock aff002; Jessica Carpenter aff004; Zhaohui Liu aff004; Christina Cowger aff005; Justin D. Faris aff006; Timothy L. Friesen aff004
Působiště autorů:
Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
aff001; Department of Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
aff002; Max Planck Institute for Evolutionary Biology, Plön, Germany
aff003; Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
aff004; Plant Science Research Unit, Raleigh, North Carolina, United States of America
aff005; Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
aff006
Vyšlo v časopise:
Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008223
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008223
Souhrn
Filamentous fungi rapidly evolve in response to environmental selection pressures in part due to their genomic plasticity. Parastagonospora nodorum, a fungal pathogen of wheat and causal agent of septoria nodorum blotch, responds to selection pressure exerted by its host, influencing the gain, loss, or functional diversification of virulence determinants, known as effector genes. Whole genome resequencing of 197 P. nodorum isolates collected from spring, durum, and winter wheat production regions of the United States enabled the examination of effector diversity and genomic regions under selection specific to geographically discrete populations. 1,026,859 SNPs/InDels were used to identify novel loci, as well as SnToxA and SnTox3 as factors in disease. Genes displaying presence/absence variation, predicted effector genes, and genes localized on an accessory chromosome had significantly higher pN/pS ratios, indicating a higher rate of sequence evolution. Population structure analyses indicated two P. nodorum populations corresponding to the Upper Midwest (Population 1) and Southern/Eastern United States (Population 2). Prevalence of SnToxA varied greatly between the two populations which correlated with presence of the host sensitivity gene Tsn1 in the most prevalent cultivars in the corresponding regions. Additionally, 12 and 5 candidate effector genes were observed to be under diversifying selection among isolates from Population 1 and 2, respectively, but under purifying selection or neutrally evolving in the opposite population. Selective sweep analysis revealed 10 and 19 regions that had recently undergone positive selection in Population 1 and 2, respectively, involving 92 genes in total. When comparing genes with and without presence/absence variation, those genes exhibiting this variation were significantly closer to transposable elements. Taken together, these results indicate that P. nodorum is rapidly adapting to distinct selection pressures unique to spring and winter wheat production regions by rapid adaptive evolution and various routes of genomic diversification, potentially facilitated through transposable element activity.
Klíčová slova:
Fungal genomics – Genome-wide association studies – Plant fungal pathogens – Population genetics – Species diversity – Spring – United States – Wheat
Zdroje
1. Thon MR, Pan H, Diener S, Papalas J, Taro A, Mitchell TK, Dean RA. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biology. 2006; 7:R16 doi: 10.1186/gb-2006-7-2-r16 16507177
2. Yoshida K, Saunders DGO, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, Inoue Y, Chuma I, Tosa Y, Cano LM, Kamoun S, Terauchi R. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016; 17:370 doi: 10.1186/s12864-016-2690-6 27194050
3. de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res. 2013;23: 1271–1282 doi: 10.1101/gr.152660.112 23685541
4. Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, Thomma BPHJ. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res. 2016;26: 1091–1100 doi: 10.1101/gr.204974.116 27325116
5. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RHY, Zody MC, Kunjeti SG, Donofrio NM, Meyers BC, Nusbaum C, Kamoun S. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 2010; 330: 1540–1543 doi: 10.1126/science.1193070 21148391
6. Croll D, McDonald BA. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 2012;8(4): e1002608 doi: 10.1371/journal.ppat.1002608 22570606
7. Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Devel. 2015;35: 57–65
8. Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012;10: 417–430 doi: 10.1038/nrmicro2790 22565130
9. Frantzeskakis L, Kracher B, Kush S, Yoshikawa-Maekawa M, Bauer S, Pedersen C, Spanu PD, Maekawa T, Schulze-Lefert P, Panstruga R. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics. 2018; 19:381 doi: 10.1186/s12864-018-4750-6 29788921
10. Frantzeskakis L, Kusch S, Panstruga R. The need for speed: compartmentalized genome evolution in filamentous phytopathogens. Mol. Plant Pathol. 2019; 20(1): 3–7 doi: 10.1111/mpp.12738 30557450
11. Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell. 2006;124(4): 803–814 doi: 10.1016/j.cell.2006.02.008 16497589
12. Zipfel C. Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol. 2009;12(4): 414–420 doi: 10.1016/j.pbi.2009.06.003 19608450
13. Giraldo MC, Valent B. Filamentous plant pathogen effectors in action. Nature Rev Micro. 2013;11: 800–814
14. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHA, Thomma BPHJ. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science. 2010;329: 953–955 doi: 10.1126/science.1190859 20724636
15. Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444: 323–329 doi: 10.1038/nature05286 17108957
16. Dodds PN, Rathjen JP. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Rev Genet. 2010;11: 539–548 doi: 10.1038/nrg2812 20585331
17. Flor HH. The complementary genic systems in flax and flax rust. Advances in genetics. 1956;8: 29–54
18. Friesen TL, Meinhardt SW, Faris JD. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J. 2007;51: 681–692 doi: 10.1111/j.1365-313X.2007.03166.x 17573802
19. Aguileta G, Refregier G, Tockteng R, Fournier E, Giraud T. Rapidly evolving genes in pathogens: Methods for detecting positive selection and examples among fungi, bacteria, viruses, and protists. Infect. Genet. Evol. 2009; p(4): 656–670 doi: 10.1016/j.meegid.2009.03.010 19442589
20. Stukenbrock EH, McDonald BA. Geographical variation and positive diversifying selection in the host-specific toxin SnToxA. Mol. Plant Pathol. 2007; 8(3): 321–332 doi: 10.1111/j.1364-3703.2007.00396.x 20507502
21. Stukenbrock EH, Jorgensen FG, Zala M, Hansen TT, McDonald BA, Shierup MH. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet. 2010; 6(12): e1001189 doi: 10.1371/journal.pgen.1001189 21203495
22. Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G, Snirc A, Le Prieur S, Jeziorski C, Branca A, Giraud T. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol. Ecol. 2017; 26(7): 2041–2062 doi: 10.1111/mec.13976 28012227
23. Mohd-Assaad N, McDonald BA, Croll D. Genome-wide detection of genes under positive selection in worldwide populations of the barley scald pathogen. Genome Biol. Evol. 2018; 10(5): 1315–1332 doi: 10.1093/gbe/evy087 29722810
24. Hartmann FE, McDonald BA, Croll D. Genome-wide evidence for divergent selection between populations of a major agricultural pathogen. Mol. Ecol. 2018; 27(12): 2725–2741 doi: 10.1111/mec.14711 29729657
25. FAOSTAT. Crop Production Data. http://www.fao.org/faostat/en/#data/QC
26. Cf Morris, Rose SP. Wheat. In Cereal grain Quality. 1996 (pp. 3–54) Springer, Dordrecht
27. USDA-ERS. Wheat Sector at a Glance. December 2018. https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/
28. Oliver RP, Friesen TL, Faris JD, Solomon PS. Stagonospora nodorum: From Pathology to Genomics and Host Resistance. Ann Rev Phytopathol. 2012;50: 23–43
29. Hane JK, Lowe RGT, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SFF, McDonald BA, Oliver RP. Dothideomycete-plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell. 2007;19: 3347–3368 doi: 10.1105/tpc.107.052829 18024570
30. Syme RA, Hane JK, Friesen TL, Oliver RP. Resequencing and comparative genomics of Stagonospora nodorum: Sectional gene absence and effector discovery. G3: Genes, Genomes, Genetics. 2013;3(6): 959–969
31. Syme RA, Tan KC, Hane JK, Dodhia K, Stoll T, Hastie M, Furuki E, Ellwood SR, Williams AH, Tan YF, Testa AC, Gorman JJ, Oliver RP. Comprehensive annotation of the Parastagonospora nodorum reference genome using next-generation genomics, transciptomics and proteogenomics. PLoS One. 2016;11(2): e0147221 doi: 10.1371/journal.pone.0147221 26840125
32. Richards JK, Wyatt NA, Liu Z, Faris JD, and Friesen TL. Reference quality genome assemblies of three Parastagonospora nodorum isolates differing in virulence on wheat. G3: Genes, Genomes, Genetics. 2018;8(2): 393–399
33. Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL. Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 2004;94: 1056–1060 doi: 10.1094/PHYTO.2004.94.10.1056 18943793
34. Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, Oliver RP, Simons KJ, Friesen TL. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci. 2010;1007: 13544–13549
35. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006;38: 953–956 doi: 10.1038/ng1839 16832356
36. Liu Z, Faris JD, Oliver RP, Tan KC, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB, Friesen TL. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog. 2009;5: e1000581 doi: 10.1371/journal.ppat.1000581 19806176
37. Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD. Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. Plant J. 2011;65: 27–38 doi: 10.1111/j.1365-313X.2010.04407.x 21175887
38. Abeysekara NS, Friesen TL, Keller B, Faris JD. Identification and characterization of a novel host-toxin interaction in the wheat-Stagonospora nodorum pathosystem. Theor Appl Genet. 2009;120: 117–126 doi: 10.1007/s00122-009-1163-6 19816671
39. Friesen TL, Chu C, Xu SS, Faris JD. SnTox5-Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol Plant Pathol. 2012;13: 1101–1109 doi: 10.1111/j.1364-3703.2012.00819.x 22830423
40. Shi G, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD. The wheat Snn7 gene confers susceptibility on recognition of the Parastagonospora nodorum necrotrophic effector SnTox7. The Plant Genome. 2015;8(2)
41. Gao Y, Faris JD, Li Z, Kim YM, Syme RA, Oliver RP, Xu SS, Friesen TL. Identification and Characterization of the SnTox6-Snn6 Interaction in the Parastagonospora nodorum-Wheat Pathosystem. Mol Plant Microbe Interact. 2015;28(5): 615–625 doi: 10.1094/MPMI-12-14-0396-R 25608181
42. Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, Xu S, Friesen TL. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathog. 2012;8: e1002467 doi: 10.1371/journal.ppat.1002467 22241993
43. Shi G, Zhang Z, Friesen TL, Raats D, Fahima T, Brueggeman RS, Lu S, Trick HN, Liu Z, Chao W, Frenkel Z, Xu SS, Rasmussen JB, Faris JD. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Science Advances. 2016;2(10): e1600822 doi: 10.1126/sciadv.1600822 27819043
44. Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cowger C. Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Phytopathology. 2012; 203(5): 498–505
45. Sommerhalder RJ, McDonald BA, and Zhan J. The frequencies and spatial distribution of mating types in Stagonospora nodorum are consistent with recurring sexual reproduction. Phytopathology 2006;96: 234–239 doi: 10.1094/PHYTO-96-0234 18944437
46. Cowger C, and Silva-Rojas HV. 2006. Frequency of Phaeosphaeria nodorum, the sexual stage of Stagonospora nodorum, on winter wheat in North Carolina. Phytopathology. 2006;96:860–866. doi: 10.1094/PHYTO-96-0860 18943751
47. Sánchez-Vallet A, Hartmann FE, Marcel TC, Croll D. Nature’s genetic screens: using genome-wide association studies for effector discovery. Mol Plant Pathol. 2018;19(1): 3–6 doi: 10.1111/mpp.12592 29226559
48. Gao Y, Liu A, Faris JD, Richards J, Brueggeman RS, Li X, Oliver RP, McDonald BA, Friesen TL. Validation of genome-wide asociation studies as a tool to identify virulence factors in Parastagonospora nodorum. Phytopathology 2016;106(10): 1177–1185 doi: 10.1094/PHYTO-02-16-0113-FI 27442533
49. Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytologist. 2017;214(2): 619–631 doi: 10.1111/nph.14434 28164301
50. Kema GHJ, Gohari AM, Aouni L, Gibriel HAY, Ware SB, van den Bosch F, Manning-Smith R, Alonso-Chavez V, Helps J, M’Barek SB, Mehrabi R, Diaz-Trujillo CD, Zamana E, Schouten HJ, van der Lee TAJ, Waalwijk C, de Waard MA, de Wit PJGM, Verstappen ECP, Thomma BPHJ, Meijer HJG, Seidl MF. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nature genet. 2018;50: 375–380 doi: 10.1038/s41588-018-0052-9 29434356
51. Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent M. A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur. J. Plant Pathol. 2003; 109(8): 871–881
52. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, Genschoreck T, Webster T, Reich D. Ancient admixture in human history. Genetics. 2012; 192(3): 1065–1093 doi: 10.1534/genetics.112.145037 22960212
53. Friesen TL, Holmes DJ, Bowden RL, Faris JD. ToxA is present in the U.S. Bipolaris sorokiniana population and is a significant virulence factor on wheat harboring Tsn1. Plant Disease. 2018; 102(2): 2446–2452
54. Bertucci M, Brown-Guedira G, Murphy JP, Cowger C. Genes conferring sensitivity to Stagonospora nodorum necrotrophic effectors in Stagonospora nodorum blotch-susceptible U.S. wheat cultivars. Plant Disease. 2014;98(6): 749–753
55. Zhang Z, Friesen TL, Simons KJ, Xu SS, Faris JD. Development, identification, and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol Breeding. 2009;23: 35–49
56. McDonald MC, Oliver RP, Friesen TL, Brunner PC, McDonald BA. Global diversity and distribution of three necrotrophic effectors in Phaesosphaeria nodorum and related species. New Phytol. 2013;199(1): 241–251 doi: 10.1111/nph.12257 23550706
57. Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, de Wit PJGM, Xu SS, Friesen TL. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. New Phytol. 2016;211(3): 1052–1064 doi: 10.1111/nph.13959 27041151
58. Oliver RP, Solomon PS. New developments in pathogenicity and virulence of necrotrophs. Curr Opin Plant Biol. 2010;13(4): 415–419 20684067
59. Oliver RP, Friesen TL, Faris JD, Solomon PS. Stagonospora nodorum: From Pathology to Genomics and Host Resistance. Ann Rev Phytopathol. 2012;50: 23–43
60. Barrett LG, Thrall PH, Dodds PN, van der Merwe M, Linde CC, Lawrence GJ, Burdon JJ. Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol. Biol. Evol. 2009; 26(11): 2499–2513 doi: 10.1093/molbev/msp166 19633228
61. Brunner PC, McDonald BA. Evolutionary analyses of the avirulence effector AvrStb6 in global populations of Zymoseptoria tritici identify candidate amino acids involved in recognition. Mol. Plant Pathol. 2018; 19(8): 1836–1846
62. Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc. Natl. Acad. Sci. 2011; 108(7): 2831–2836 doi: 10.1073/pnas.1014971108 21282627
63. Rovenich H, Boshoven JC, Thomma BPHJ. Filamentous pathogen effector functions: of pathogens, hosts, and microbiomes. Curr Opin Plant Biol. 2014;20: 96–103 doi: 10.1016/j.pbi.2014.05.001 24879450
64. Schrider DR, Hourmozdi JN, Hahn MW. Pervasive multi-nucleotide mutational events in eukaryotes. Curr. Biol. 2011; 21(12): 1051–1054 doi: 10.1016/j.cub.2011.05.013 21636278
65. Venkat A, Hahn MW, Thornton JW. Multinucleotide mutations cause false inferences of lineage-specific positive selection. Nat. Ecol. Evol. 2018; 2: 1280–1288 doi: 10.1038/s41559-018-0584-5 29967485
66. Goodwin SB, M’Barek SB, Dhillon B, Wittenberg AHJ, Crane CF, et al. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011; 7(6); e1002070 doi: 10.1371/journal.pgen.1002070 21695235
67. Grandaubert J, Dutheil JY, Stukenbrock EH. The genomic determinants of adaptive evolution in a fungal pathogen. Evol. Letters. 2019; 3(3): 299–312
68. Croll D, Lendenmann MH, Steward E, McDonald BA. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen. Genetics. 2015;201: 1213–1228 doi: 10.1534/genetics.115.180968 26392286
69. Hématy K, Cherk C, Somerville S. Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol. 2009;12(4): 406–413 doi: 10.1016/j.pbi.2009.06.007 19616468
70. Rowe HC, Kliebenstein DJ. Elevated genetic variation within virulence-associated Botrytis cinera polygalacturonase loci. Mol Plant Microbe Inter. 2007;20(9): 1126–1137
71. Stukenbrock EH, McDonald BA. Population genetics of fungal and Oomycete effectors involved in gene-for-gene interactions. Mol Plant Microbe Inter. 2009;22(4): 371–380
72. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010;175–176.
73. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15): 2114–2120 doi: 10.1093/bioinformatics/btu170 24695404
74. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303.3997
75. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16): 2078–2079 doi: 10.1093/bioinformatics/btp352 19505943
76. R Core Team. 2013. R: A language and environment for statistical computing.
77. Knaus BJ, Grunwald NJ. VCFR: a package to manipulate and visualize variant call format data in R. Mol Ecol Res. 2017;17(1): 44–53
78. Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11): 1403–1405 doi: 10.1093/bioinformatics/btn129 18397895
79. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19): 2633–2635 doi: 10.1093/bioinformatics/btm308 17586829
80. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2): 945–959 10835412
81. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8): 2611–2620 doi: 10.1111/j.1365-294X.2005.02553.x 15969739
82. Earl DA. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2012;4(2): 359–361
83. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G. The variant call format and VCFtools. Bioinformatics. 2011;27(15): 2156–2158 doi: 10.1093/bioinformatics/btr330 21653522
84. Pfeifer B, Wittelsburger U, Ramos-Onsins SE, Lercher MJ. PopGenome: An efficient Swiss Army knife for population genomic analyses in R. Mol Biol Evol. 2014;31(7): 1929–1936 doi: 10.1093/molbev/msu136 24739305
85. Pavlidis P, Živković D, Stamatakis A, Alachiotis N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Molecular biology and evolution. 2013;30(9):2224–34. doi: 10.1093/molbev/mst112 23777627
86. Quinlan AR, Hall IA. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6): 841–842 doi: 10.1093/bioinformatics/btq033 20110278
87. Friesen TL, Faris JD. Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. In Plant Fungal Pathogens: Methods and Protocols, Methods in Molecular Biology. Bolton MD and Thomma BPHJ (eds.). 2012; 835:191–207
88. Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD. Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology. 2004;94(10): 1061–1067 doi: 10.1094/PHYTO.2004.94.10.1061 18943794
89. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9. doi: 10.1093/bioinformatics/bts444 22796960
90. Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Liu D, Lipka AE, Buckler ES. GAPIT version 2: an enhanced integrated tool for genomic association and prediction. The plant genome. 2016;9(2).
91. Savojardo C, Martelli PL, Fariselli P, Casadio R. DeepSig: deep learning improves signal peptide detection in proteins. Bioinformatics. 2018;2018: 1–7
92. Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, Manners JM, Taylor JM. EffectorP: predicting fungal effector proteins from secretomes using machine learning. New Phytol. 2016;210(2): 743–761 doi: 10.1111/nph.13794 26680733
93. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011; 27(21): 2987–2993 doi: 10.1093/bioinformatics/btr509 21903627
94. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Systems biol. 2011; 7(1): 539
95. De Mita S, Siol M. EggLib: processing, analysis, and simulation tools for population genetics and genomics. BMC genets. 2012; 13(1): 27
96. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118. Fly. 2012;6(2): 80–92 doi: 10.4161/fly.19695 22728672
97. Ruden DM, Cingolani P, Patel VM, Coon M, Ngueyn T, Land SJ, Lu X. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Frontiers Genet. 2012;3: 35
98. Zdobnov EM, Apweiler R. InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17(9):847–8 doi: 10.1093/bioinformatics/17.9.847 11590104
99. Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version. 2010;2(0)
100. Smit AFA and Hubley R. 2008. RepeatModeler Open-1.0. http://www.repeatmasker.org.
101. Smit AFA, Hubley R, and Green P. 2017. RepeatMasker Open-3.0. http://www.repeatmasker.org
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 10
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Při spontánní ovulaci je nitroděložní inseminace nejúspěšnější první den po vzestupu hladiny luteinizačního hormonu
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Příjem alkoholu a menstruační cyklus
Nejčtenější v tomto čísle
- Spatiotemporal cytoskeleton organizations determine morphogenesis of multicellular trichomes in tomato
- Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression
- TSEN54 missense variant in Standard Schnauzers with leukodystrophy
- Viral quasispecies
Zvyšte si kvalifikaci online z pohodlí domova
Kardiologické projevy hypereozinofilií
nový kurzVšechny kurzy