#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis


Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF) has an important role in the control of phosphate (Pi) starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1) mutants and in wild type plants, we show that PHR1 in conjunction with PHL1 controls most transcriptional activation and repression responses to phosphate starvation, regardless of the Pi starvation specificity of these responses. Induced genes are enriched in PHR1 binding sequences (P1BS) in their promoters, whereas repressed genes do not show such enrichment, suggesting that PHR1(-like) control of transcriptional repression responses is indirect. In agreement with this, transcriptomic analysis of a transgenic plant expressing PHR1 fused to the hormone ligand domain of the glucocorticoid receptor showed that PHR1 direct targets (i.e., displaying altered expression after GR:PHR1 activation by dexamethasone in the presence of cycloheximide) corresponded largely to Pi starvation-induced genes that are highly enriched in P1BS. A minimal promoter containing a multimerised P1BS recapitulates Pi starvation-specific responsiveness. Likewise, mutation of P1BS in the promoter of two Pi starvation-responsive genes impaired their responsiveness to Pi starvation, but not to other stress types. Phylogenetic footprinting confirmed the importance of P1BS and PHR1 in Pi starvation responsiveness and indicated that P1BS acts in concert with other cis motifs. All together, our data show that PHR1 and PHL1 are partially redundant TF acting as central integrators of Pi starvation responses, both specific and generic. In addition, they indicate that transcriptional repression responses are an integral part of adaptive responses to stress.


Published in the journal: . PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001102
Category: Research Article
doi: https://doi.org/10.1371/journal.pgen.1001102

Summary

Plants respond to different stresses by inducing or repressing transcription of partially overlapping sets of genes. In Arabidopsis, the PHR1 transcription factor (TF) has an important role in the control of phosphate (Pi) starvation stress responses. Using transcriptomic analysis of Pi starvation in phr1, and phr1 phr1-like (phl1) mutants and in wild type plants, we show that PHR1 in conjunction with PHL1 controls most transcriptional activation and repression responses to phosphate starvation, regardless of the Pi starvation specificity of these responses. Induced genes are enriched in PHR1 binding sequences (P1BS) in their promoters, whereas repressed genes do not show such enrichment, suggesting that PHR1(-like) control of transcriptional repression responses is indirect. In agreement with this, transcriptomic analysis of a transgenic plant expressing PHR1 fused to the hormone ligand domain of the glucocorticoid receptor showed that PHR1 direct targets (i.e., displaying altered expression after GR:PHR1 activation by dexamethasone in the presence of cycloheximide) corresponded largely to Pi starvation-induced genes that are highly enriched in P1BS. A minimal promoter containing a multimerised P1BS recapitulates Pi starvation-specific responsiveness. Likewise, mutation of P1BS in the promoter of two Pi starvation-responsive genes impaired their responsiveness to Pi starvation, but not to other stress types. Phylogenetic footprinting confirmed the importance of P1BS and PHR1 in Pi starvation responsiveness and indicated that P1BS acts in concert with other cis motifs. All together, our data show that PHR1 and PHL1 are partially redundant TF acting as central integrators of Pi starvation responses, both specific and generic. In addition, they indicate that transcriptional repression responses are an integral part of adaptive responses to stress.

Introduction

Plants have evolved adaptive responses to cope with growth under a variety of stress conditions. These responses involve changes that are specific to particular types of stress or shared by different stress types. A specific response to phosphate (Pi) starvation, for example, is increased Pi uptake capacity from the soil, whereas the induction of anthocyanin accumulation and acceleration of senescence are shared responses to many different kinds of stress [1][3]. In line with the overlap among physiological and developmental responses to different stress types, transcriptional responses overlap as well [4], [5]. An important question regarding transcriptional responses to stress is how specific and shared responses are regulated - are they controlled by the same regulatory systems or are there generic stress response regulators? A second question is the biological significance of transcriptional repression in stress responses. Is it mostly an integral part of the adaptive system or is it mainly an indirect consequence of plant malfunction due to stress?

We addressed these two questions, focussing on the Pi starvation stress response as a model in Arabidopsis. The importance of transcriptional control in the regulation of Pi starvation responses has already been established. The expression of a large number of genes is altered in response to Pi starvation (between 900 and 3000, depending on the study) [6][11]. The transcription factor (TF) PHR1 is a key regulatory component of Pi starvation responses in Arabidopsis [12]; PHR1 binds to an imperfect palindromic motif present in the promoters of many Pi starvation-induced genes. Loss of function mutation of PHR1 affects several Pi starvation responses, including alteration of root to shoot growth ratio, anthocyanin accumulation, and the expression of several Pi starvation-induced genes. Nonetheless, the extent of the role of PHR1 in Pi starvation responses has yet to be established. PHR1 is part of a family of 15 genes in Arabidopsis (MYB-CC family). Some functional redundancy among family members has been suggested, based on the fact that the phr1 effect on some Pi starvation-responsive genes is only partial [12].

In addition to PHR1, members of bHLH, WRKY, Zinc finger and R2R3 MYB families of TF are involved in the control of Pi starvation responses, although their exact positions in the signalling pathway have not been established [13][17]. Whereas PHR1 is weakly transcriptionally responsive to Pi starvation, these other TF genes are highly responsive to Pi stress, suggesting that they act downstream of PHR1.

Additional mechanisms other than TF operate to regulate Pi starvation signalling. These include sumoylation [18], degradation by the proteosome, which probably involves the E2 ubiquitin conjugase-related enzyme (PHO2) [19][21], and control of Pi uptake efficiency via a phosphate transporter traffic facilitator (PHF1) [22], as well as several miRNA and antagonists (IPS1 and related genes) of miRNA MiR399, which controls PHO2 activity [20], [23][27]. There is also a Pi starvation-induced gene family that encodes nuclear SPX domain-containing proteins, which affects responsiveness of several Pi starvation-induced genes through an unknown mechanism [28], [29]. MiR399, IPS1 and PHF1 are all under the control of PHR1, which itself is sumoylated in vitro by SIZ1, further strengthening the central role of PHR1 in the control of Pi starvation responses [12], [18], [20], [22].

Here we performed a physiological and transcriptomic analysis of Pi starvation responses in plants with altered PHR1(-like) activity, comparing mutants of phr1, phr1-like1 (phl1) and phr1 phl1, and PHR1-overexpressing transgenic lines. Results showed that PHR1 and PHL1 are partially redundant and have a central role in the control of physiological and molecular responses to Pi starvation, independent of whether these responses are specific to Pi starvation stress. They also indicate that a large proportion of the transcriptional repression responses to Pi starvation are part of the adaptive response to this stress, and that their control by PHR1(-like) is indirect. We also show the importance of the PHR1 binding sequence (P1BS) as an integrating cis-regulatory motif associated with genes that are highly induced by Pi starvation.

Results

Functional redundancy between PHR1 and PHR1-LIKE1 (PHL1) and their central role in the control of Pi starvation responses

PHR1 mutants show distinct degrees of impairment of different Pi starvation responses, as evident in expression analyses of a set of Pi starvation-responsive genes [12]. Incomplete impairment of these responses could reflect partial gene redundancy, as PHR1 belongs to a transcription factor family with 15 close members (Figure 1A and Figure S1). It is also possible that more than a single regulatory system controls Pi starvation responses. To study the relationships between these possibilities, we searched for T-DNA mutations at PHR1-related genes in public databases; the two phylogenetically most closely related Arabidopsis genes for which a mutant was available were At5g29000 and At5g06800. We selected At5g29000, which we term PHR1-LIKE1 (PHL1) for further analysis, as it displayed a higher degree of amino acid identity with PHR1, and the T-DNA mutation disrupted the coding region of PHL1 mRNA (Figure S1 and Figure S2A). We examined whether expression of PHR1 and PHL1 overlapped. Northern analysis showed that PHL1 expression overlapped with that of PHR1 in both shoots and roots under any Pi regime (Figure S2B). This observation was confirmed by the large overlap in PHR1 and PHL1 expression at different developmental stages, according to GENEVESTIGATOR gene expression data (https://www.genevestigator.com) [30] (Figure S2C). After generating a homozygous double mutant phr1 phl1, functional redundancy between PHR1 and PHL1 was shown by northern analysis (Figure 1B). Whereas the effect of the phl1 mutation on Pi starvation responsiveness was barely detectable, we observed a synergistic effect of phr1 and phl1 mutations for expression of all genes examined. To be noted is the limited effect of these mutations on expression of Pi starvation induced genes in plants grown under a high Pi regimen, as shown by northern analysis and also using quantitative reverse transcription PCR (Q-RT-PCR) (Figure 1B and Figure S3).

Functional redundancy of <i>PHR1</i> and <i>PHL1</i> in Pi starvation responsiveness of gene expression.
Fig. 1. Functional redundancy of PHR1 and PHL1 in Pi starvation responsiveness of gene expression.
(A) Phylogram of MYB-CC proteins from Arabidopsis, constructed using the Phylogeny-fr platform (www.phylogeny.fr) [70]. In addition to the AGI number, names are given for the functionally characterized members: PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1) [12]; PHR1-LIKE1 (PHL1; this study) ALTERED PHLOEM DEVELOPMENT (APL) [71]. The bootstrap value of each node is indicated (100 samples); nodes with bootstrap value <50 were collapsed. Only the conserved MYB and coiled-coil domains were used for alignment (Figure S1) and tree construction. (B) Northern analysis of the effect of phr1 and phl1 mutations on the expression of Pi starvation-responsive marker genes. Plants were grown for 7 days in Pi-rich or -lacking medium; RNA from roots and shoots was isolated separately and blots were hybridised sequentially to the probes PHT1;1, RNS1, IPS1, and SPX1. Ethidium bromide-stained rRNA was used as loading control.

For comparative purposes, we produced transgenic plants with the phr1 background, overexpressing PHR1 fused to the rat glucocorticoid receptor domain (GR:PHR1) to allow dexamethasone (DEX)-inducible control of its activity [31]. Northern analysis showed that three independent lines overexpressing the GR:PHR1 fusion had DEX-dependent PHR1 activity (Figure S4). The effect of GR:PHR1 overexpression on gene expression was detected even when plants were grown under Pi sufficient conditions (Figure S4). These results are in agreement with previous reports [32], [33], and indicate that PHR1 overexpression can override, at least to some extent, the negative regulatory control that occurs at much more limited PHR1 levels in wild type plants.

Physiological tests were performed on wild type, phr1, phl1 and phr1 phl1 mutants, and transgenic plants overexpressing GR:PHR1 (Figure 2). In accordance with previous results [12], Pi accumulation in plants grown under Pi sufficient conditions was reduced in the phr1 mutant (compared to wild type plants; Figure 2A). The phl1 mutant had slightly, but significantly reduced Pi levels, and a further decrease in Pi accumulation was observed in the phr1 phl1 double mutant, indicating partial functional redundancy between these two MYB-CC family genes. Conversely, Pi accumulation in DEX-treated GR:PHR1-overexpressing plants (OxGR:PHR1) was greatly increased with respect to that in wild type plants (Figure 2A). After Pi starvation, anthocyanins accumulate in leaves and stems of wild type plants; much less anthocyanin accumulated in the phr1 mutant (Figure 2A). The effect on anthocyanin accumulation was negligible for phl1, however, and did not differ significantly between phr1 and the phr1 phl1 double mutant (Figure 2A). In contrast, anthocyanin accumulation was enhanced in OxGR:PHR1 plants. Following Pi starvation, wild type plants show an increase in root to shoot growth ratio; this increase was significantly reduced in phr1 mutants, whereas the phl1 mutation had a negligible effect alone or in combination with phr1. In DEX-treated phr1 GR:PHR1-overexpressing plants, the root to shoot growth ratio was similar to that of wild type plants in Pi starvation conditions (Figure 2A).

Effect of <i>phr1</i> and <i>phl1</i> mutations and PHR1 overexpression on physiological responses to Pi starvation.
Fig. 2. Effect of phr1 and phl1 mutations and PHR1 overexpression on physiological responses to Pi starvation.
(A) Histograms of metabolic (Pi and anthocyanin content) and developmental (root/shoot fresh weight ratio and number of siliques per plant) parameters of wild type (wt), phr1, phl1, and phr1 phl1 mutants, and GR:PHR1 overexpression line (OxPHR1). For analysis of Pi content, plants were grown for 12 days in complete medium (+Pi) and +Pi supplemented with 5 µM dexamethasone (+Pi+DEX). Anthocyanin content was measured in plants grown for 12 days in Pi-lacking medium supplemented with 5 µM DEX (−Pi+DEX). Root/shoot fresh weight (FW) ratio was measured in plants grown for 10 days in +Pi medium, and then transferred for 6 days to +Pi+DEX or −Pi+DEX media. Number of siliques was scored in plants grown for 9 days in +Pi and transferred to −Pi+DEX. Day 0 corresponds to start of germination. (B) Phenotypes of wild type, phr1, phl1, and phr1 phl1 plants, and a OxPHR1 line grown for 9 days in complete medium, then transferred to −Pi+DEX for 13 days. The image reflects a phenotype frequent at the time examined. (C) Root hair size of wild type, phr1, phl1, and phr1 phl1 plants, and a OxPHR1 line (left) and a detail (right) showing root hairs of wild type (top) and phr1 phl1 plants (bottom). Plants were grown in vertical plates for 12 days in Pi-lacking medium. Scale bar, 0.5 mm. Asterisks indicate significant differences with wild type (p<0.05, Student's t-test).

The effect of phl1, and in particular, of phr1 and phr1 phl1 mutations on senescence and silique formation was evident on plants grown in Pi starvation conditions, as these plants died before flowering (Figure 2A and 2B). In contrast, DEX-treated OxGR:PHR1 plants showed slightly accelerated flowering and higher silique production. These findings concur with the idea that cell death in the mutants reflects a lack of correct protection against the stress inherent in Pi starvation, and that increased PHR1 activity results in increased reproductive success in these stress conditions.

The effect on root hair length was quite obvious when plants where grown in Pi-lacking medium in vertical plates; the phr1 mutation affected root hair length, which was enhanced when combined with the phl1 mutation (Figure 2C).

PHL1 and PHR1 have similar in vitro DNA-binding properties

Given the partial functional redundancy between PHR1 and PHL1, as shown by our analyses of phr1 and phl1 single and double mutants, we examined whether these two proteins had similar DNA binding properties and whether they were able to heterodimerise. For these studies, we used two N-terminally truncated versions of each protein obtained by in vitro translation, since a previous study with PHR1 showed that in vitro-translated N-terminally truncated PHR1 protein had similar DNA binding specificity but higher affinity than the full length protein [12]. The two deletions removed 99 or 198 N-terminal amino acids of PHR1 and 103 or 210 residues of PHL1 (Figure 3A). Electrophoretic mobility shift assays (EMSA) indicated that both PHL1 versions could interact with P1BS sequences, the prototype PHR1 binding site (Figure 3B). EMSA with the two cotranslated truncated PHL1 versions showed the appearance of a band of intermediate mobility, in addition to those corresponding to the medium and short versions of truncated PHL1; this was indicative of the self-dimerisation properties of PHL1 [34], as also observed for PHR1 [12]. Intermediate mobility bands were also observed when the medium size PHL1 version was cotranslated with the short PHR1 version, indicating that they can form heterodimers (Figure 3C).

DNA-binding and dimerisation properties of PHL1.
Fig. 3. DNA-binding and dimerisation properties of PHL1.
(A) Diagram showing the PHR1 and PHL1 proteins, including MYB (black) and the predicted coiled-coil domains (grey), indicating the start of the N-terminally truncated versions of PHR1 (medium-length PHR1, R1-M; short PHR1, R1-S) and PHL1 (medium-length PHL1, L1-M; short PHL1, L1-S) used (left). The core sequence of the oligonucleotide containing the PHR1 binding sequence (P1BS) and the mutated version (P1BS mut) are shown (right). (B) EMSA showing binding to P1BS, but not to its mutant version, of N-terminal forms of PHL1. (C) PHL1 dimerisation determined by EMSA with the two N-terminally truncated versions of PHL1 and PHR1. Proteins were translated in vitro alone or in combination. Arrows show the position of the homodimers formed with short (closed arrows) and medium-length proteins (open arrows); asterisks show the position of homo- or heterodimers formed by the combination of short and medium-length proteins. A mock translation mixture (Mock) was used as control.

The ability of PHL1 and PHR1 to heterodimerise was confirmed by identification of PHL1 as a PHR1-interacting protein in a yeast two-hybrid assay (Figure S5).

Broad effects of phr1 and phr1 phl1 mutants on transcriptional responsiveness to Pi starvation

To examine the correspondence between the effects of phr1 and combined phr1 phl1 mutations on physiological responses and transcriptional responses to Pi starvation, we performed transcriptomic analysis in wild type, as well as single phr1 and double phr1 phl1 mutants. For these assays, wild type plants were germinated and grown for 7 days in Pi-sufficient and -starvation conditions, and mutant plants were grown in Pi starvation conditions. The use of long-term stress treatment for the analysis was aimed to identify the long-term effects of these mutations.

For transcriptomic analyses, we collected RNA separately from shoots and roots in three independent replicates obtained over a two-month interval. A total of 1873 and 704 genes were upregulated, and 1795 and 326 downregulated in Pi-starved shoots and roots, respectively (cut-off values 2-fold, false discovery rate (FDR)<0.05; Table 1 and Table S1). The effect of the phr1 mutation, particularly when combined with phl1, on the expression of these Pi starvation-responsive genes was striking (Table 1). Of the genes whose expression was induced two-fold or more in the wild type plants in response to Pi starvation, 68% and 47% showed at least two-fold reduced expression in the shoots and roots, respectively, of the Pi-starved phr1 phl1 double mutant compared to wild type in the same conditions. In contrast, only 1.4% and 2% of Pi starvation-induced genes in shoots and roots showed increased expression in the Pi-starved double mutant. These numbers are even more extreme if only genes induced four-fold or more in wild type plants are analysed, or if the cut-off values in the mutant versus wild type comparison are relaxed (1.5-fold, FDR<0.1) (Table 1). For example, >80% and 60% of the Pi starvation-induced genes in shoots and roots, respectively, show reduced expression in the Pi-starved phr1 phl1 double mutant using cut-off values of 1.5-fold, FDR<0.1. The situation is similar for the repressed genes, as 70% and 46% of genes repressed in shoot and roots, respectively, of wild type plants grown in Pi starvation conditions showed higher expression in the Pi-starved double mutant. These data underline the central regulatory role of PHR1(-like) genes in the transcriptional control of Pi starvation responses. Reciprocally, phr1 and phl1 mutations mostly affect expression of Pi responsive genes (Figure S6). For example, Pi starved shoots of the double mutant display reduced expression relative to wild type levels of almost 90% of highly (>4×) Pi starvation induced genes, while this proportion falls below 2% for non Pi starvation responsive (or Pi starvation repressed) genes (Figure S6).

Tab. 1. Transcriptomic responses to Pi starvation and effect of phr1 and phl1 mutations.
Transcriptomic responses to Pi starvation and effect of <i>phr1</i> and <i>phl1</i> mutations.
Total number of Pi starvation-induced (Up) and -repressed (Down) genes in wild type shoots and roots. The percentage is indicated of these Pi starvation-responsive genes that show reduced or increased expression in Pi-starved single phr1 and double phr1 phl1 mutants. Analysis was done using two different cut-off values for Pi starvation-responsive genes in wild type (two-fold (2×) and four-fold (4×), FDR<0.05) and in mutants (2×, FDR<0.05; 1.5-fold (1.5×), FDR<0.1).

To measure the extent of functional redundancy between PHR1 and PHL1, we examined the Pi starvation-responsive genes whose expression was greatly altered in the double mutant compared to phr1. Only a small proportion of Pi starvation-responsive genes showed more than two-fold altered expression in the phr1 phl1 double mutant compared to phr1 (200 Pi starvation-induced and 82 Pi starvation-repressed genes displayed more than two-fold reduced and increased expression, respectively, in phr1 phl1 vs. phr1; Table S2). Of the genes showing altered expression in phr1 phl1 compared to phr1, only 30% did not show altered expression in Pi-starved single phr1 mutant vs. Pi-starved wild type plants, indicating a large functional overlap between phr1 and phl1.

We used MAPMAN ontology tools to obtain an overview of Pi starvation-responsive genes involved in metabolism and regulation (http://mapman.gabipd.org/web/guest/home) [35] (Figure S7). Pi starvation had a broad effect on genes involved in all aspects of metabolism. In particular, induced genes were greatly enriched in secondary metabolism biosynthetic genes, especially those of phenylpropanoids (Figure S7A). There was also an increase in biosynthetic genes of sulpholipids and galactolipids, which replace phospholipids under Pi-limiting conditions as previously reported [36][38], and of tetrapyrroles. Pi starvation also had a large effect on transcriptional repression of genes involved in light reactions of photosynthesis and in photorespiration (Figure S7A). These are likely protective responses as they would reduce the potential generation of reactive oxygen species. Pi starvation-triggered changes in the transcription of regulatory components showed notable effects on genes encoding transcription factors, components of protein degradation machinery, hormone biosynthesis and signalling, and calcium-based regulation, with induction more prominent than repression (Figure S7B). Our findings are qualitatively similar to those in previous reports [9], [10].

We compared our set of Pi starvation-induced and -repressed genes with the sets of genes responsive to different types of stress or hormones available at the GENEVESTIGATOR database [30] (Table S3). In most cases, there were significant overlaps between the set of genes responsive to Pi starvation and those responsive to other types of stress and, as reported, there were also many significant overlaps with hormone-responsive gene sets [39]. To infer whether control of shared genes, i.e., responsive to Pi starvation and other stresses, could occur through independent regulatory systems (involving different stress type-specific TF) or, alternatively, could in part use common regulatory components, we examined the representation of TF genes in the sets of shared genes that respond to Pi starvation and to other stress types. In most cases, we found that TF genes were equally over-represented relative to non-TF genes in the sets of shared genes (Table S3); this favours the idea that transcriptional control of genes that respond to two stress types in part uses common regulatory components. Two exceptions corresponded to hydrogen peroxide treatment and low nitrate growth conditions, whose induced genes are significantly enriched in Pi starvation-induced genes; enrichment was much weaker or non-existent for Pi starvation-induced TF, however, raising the possibility that in these cases, part of the shared response is controlled by independent TF.

Finally, we studied the effect of Pi starvation on general stress response (GSR) genes. Two independent studies recently identified sets of general stress-induced genes [4], [5]. There is considerable overrepresentation of these genes in our set of Pi starvation genes induced two-fold or more (>44% vs. a predicted 9%) (Table 2). A large proportion of these general stress-induced genes responsive to Pi starvation show reduced expression in the Pi-starved phr1 phl1 double mutant (∼70%), indicating that general stress responses associated to Pi starvation are controlled by PHR1(-like) TF.

Tab. 2. Pi starvation responsiveness of general stress response (GSR) genes and their control by PHR1(-like).
Pi starvation responsiveness of general stress response (<i>GSR</i>) genes and their control by PHR1(-like).
The number of GSR genes reported in two previous studies [4], [5], as well as the number of GSR genes induced by Pi starvation (PSI-GSR; cut-off value 2×, FDR<0.05) is given. The number is also shown of Pi starvation-induced GSR genes that display lower expression after Pi starvation in phr1 phl1 double mutant versus wild type plants (cut-off value 1.5×, FDR<0.1).

Direct targets of PHR1 are greatly enriched in P1BS-containing Pi starvation-induced genes

To examine direct targets of PHR1, we followed the strategy originally described by Galaktionov and Sablowski [40], [41], which is based on the use of a transgenic phr1 mutant plants expressing the GR:PHR1 fusion (OxGR:PHR1 phr1), whose activity is postranslationally controlled by DEX. Gene expression analysis following DEX-mediated PHR1 activation and the concomitant inhibition of translation with cycloheximide (CHX), which prevents PHR1 effects on the expression of secondary targets, will inform on PHR1 direct targets. For this study, OxGR:PHR1 phr1 and phr1 plants were grown in complete (+Pi) liquid medium for 7 days, then transferred for 2 days to phosphate-lacking (−Pi) medium. Plants were then supplemented with 5 µM DEX and 10 µM CHX, and incubated for 6 h before harvest. Total RNA was isolated from 3 independent samples of OxGR:PHR1 phr1 and phr1 plants and transcriptomic analysis was performed. Using standard cut-off values (two-fold, FDR<0.05), 319 and 21 genes showed increased or decreased expression in OxGR:PHR1 phr1 vs. phr1 mutant plants, respectively. A considerable overlap was found between the set of genes with increased expression in CHX-treated OxGR:PHR1 phr1 plants with the set of Pi starvation-induced genes (210 out of 319), whereas there was almost no overlap between genes with reduced expression in CHX-treated OxGR:PHR1 phr1 plants and Pi starvation-repressed genes (1 gene; Table 3 and Table S4). This finding indicates that PHR1 is a bona fide transcriptional activator and that PHR1 control of Pi starvation-repressed genes is indirect.

Tab. 3. PHR1 direct targets.
PHR1 direct targets.
The total number of genes with higher (Up) or lower (Down) expression in the phr1 mutant overexpressing the GR:PHR1 fusion compared to phr1 mutant plants is shown. The number is shown of coincidences with Pi starvation up- or downregulated genes. In this experiment, plants were grown for 7 days in +Pi medium, transferred for 2 days to −Pi medium, and then treated with 5 µM DEX and 10 µM CHX for 6 h before harvest.

To substantiate the conclusion that PHR1 control of Pi starvation-repressed genes is indirect, we tested for P1BS in different parts of the Pi starvation-responsive genes and in PHR1 direct targets. Direct targets were enriched in P1BS sequences in all parts of the gene compared to average Arabidopsis genes. As a result, only 3% of PHR1 direct targets did not have a P1BS site in the region encompassing 3 kb of the promoter region to 3 kb downstream, compared to 17% for average Arabidopsis genes. Enrichment was especially high in the 1 kb proximal promoter region and even higher in the 5′UTR. Although the 3′UTR of direct targets was only weakly enriched in P1BS sequences, P1BS was significantly enriched in the 3′UTR of the whole set of Pi starvation-induced genes (Figure 4 and Table S5).

P1BS distribution over different gene parts of PHR1 direct targets and Pi starvation-responsive genes.
Fig. 4. P1BS distribution over different gene parts of PHR1 direct targets and Pi starvation-responsive genes.
(A) P1BS content per gene in different gene parts (distal promoter region, 3-1 kb prom; proximal promoter region, 1kb prom; 5′UTR, coding region, CDS; Intron; 3′UTR; proximal downstream region, 1 kb downs; distal downstream region, 1–3 kb downs) (left) and proportion of genes lacking P1BS in any of these gene parts (right). The P1BS content of the average Arabidopsis genes, represented in the Affimetrix chip used in transcriptomic analyses, is taken arbitrarily as 1. (B) Average number of other stresses in which Pi starvation-induced genes are also induced relative to the number of P1BS motifs in the 1 kb proximal promoter region. Data for induction by other stress types were obtained from 28 stress conditions for which transcriptomic data were available in the GENEVESTIGATOR database (https://www.genevestigator.com) [30]. Asterisks in A and B represent significant differences (p<0.01 using the χ2 test). (C) Relation between the number of P1BS motifs in the 1 kb promoter proximal region and log2 x-fold induction. The number of P1BS/gene (No P1BS/gene) was calculated as the average content of P1BS motifs over successive sets of 30 genes, measured at a one-gene interval, ordered according to inducibility by Pi starvation.

We next tested whether specificity of Pi starvation inducibility correlated with P1BS content in the promoter. We examined the average number of other stresses in which Pi starvation-induced genes are also induced relative to the presence of none, one, or more than one P1BS in the 1 kb proximal promoter region, 5′UTR, 3′UTR, introns or 1 kb proximal downstream region, or in any combination of these, in which the set of Pi starvation-induced genes and/or PHR1 direct targets showed a significantly higher P1BS levels compared to average Arabidopsis genes (Figure 4A and Table S5). P1BS content in the proximal promoter region, the 5′UTR or introns was associated with slightly higher specificity of Pi starvation-responsiveness; however, the difference in specificity was insufficient to ascribe specificity to the class of genes containing P1BS (Figure 4B and Figure S8A).

We examined whether genes with P1BS in their promoters, 5′UTR, 3′UTR, introns and the 1 kb downstream region were induced at a higher level by Pi starvation. Analysis of P1BS representation relative to the x-fold induction showed a striking correlation between inducibility and P1BS content in the 1 kb proximal promoter region, whereas P1BS content in other gene regions showed no correlation with inducibility (Figure 4C and Figure S8B).

The P1BS sequence is a key cis-regulatory motif in Pi starvation signalling

To confirm the importance of P1BS as key cis-regulatory motifs in Pi starvation signalling, we performed two types of experiments: i) evaluation of the effect of P1BS mutation on Pi starvation-responsive genes and ii) analysis of Pi starvation responsiveness mediated by a minimal promoter containing multimerised P1BS.

For the first experiment, we selected the promoters of two genes, IPS1, a highly specific Pi starvation-induced gene [42], and RNS1, which is also responsive to wounding stress [43]. A 1 kb DNA fragment containing the promoter proximal region up to the first initiation codon in the transcribed region was obtained for each gene by PCR amplification of genomic DNA. We also prepared mutants in which the P1BS sites of each gene were impaired. For the IPS1 promoter, which has two P1BS, we obtained single mutants of each P1BS and a double mutant of both. Transgenic plants harbouring these promoters or their mutant versions fused to the coding region of GUS in the pBI101 binary vector [44] were obtained (Figure 5A).

P1BS is a key <i>cis</i>-regulatory motif in Pi starvation responsiveness.
Fig. 5. P1BS is a key cis-regulatory motif in Pi starvation responsiveness.
(A) Diagram shows IPS1:GUS and RNS1:GUS reporter genes and mutated versions thereof. The P1BS motifs in each gene are highlighted with a vertical bar (wild type, black; mutant, red). (B,C) Histochemical analysis of GUS activity driven by wild type and mutated versions of the IPS1:GUS reporter gene in plants grown in +Pi or −Pi media (B), or driven by wild-type and a mutated version of the RNS1:GUS reporter gene in plants grown in +Pi and +Pi media after wounding (C). (D) Northern analysis of RNS1 gene expression in wild type and phr1, phl1, and phr1 phl1 mutants in response to Pi starvation or wounding. Ethidium bromide-stained rRNA was used as loading control. For the Pi starvation experiment, plants were grown for 7 days in +Pi or −Pi media and RNA prepared from shoots. For the wounding experiment, plants were grown for 14 days, and wounded and unwounded control leaves were harvested for histochemical analysis of GUS activity and for RNA isolation 8 h after wounding.

In the case of wild type IPS1 constructs (IPS1:GUS), 10 of 10 transgenic plants examined showed Pi starvation-induced GUS activity. Mutation of P1BS-2 had no effect on Pi starvation responsiveness (9 of 10 transgenic plants showed Pi starvation-induced GUS activity), whereas mutation of P1BS-1 abolished Pi starvation responsiveness (10 of 10 plants had no GUS activity; see example in Figure 5B). For wild type RNS1, 9 of 10 transgenic plants displayed Pi starvation-induced GUS activity, whereas P1BS impairment resulted in no Pi starvation-induced GUS activity (Figure 5C). In the case of RNS1, we also examined responsiveness to wounding. Both the wild type RNS1 promoter and the mutant promoter impaired in P1BS showed similar wounding-induced GUS activity (Figure 5C). We examined whether phr1 and/or phl1 mutations affected RNS1 expression. Northern analysis indicated that mutation of PHR1 and PHL1, while impairing Pi starvation responsiveness, had no effect on the RNS1 wounding response (Figure 5D). These results point to a critical role for P1BS in Pi starvation responsiveness and, in the context of non-specific Pi starvation-responsive genes, indicate that PHR1(-like) and P1BS are not necessarily required for responsiveness to stresses other than Pi starvation. In addition, it is evident from the case of IPS1 that not all P1BS motifs in a promoter are equally relevant for Pi starvation responsiveness. Other architectural determinants such as nucleosome positioning and P1BS organisation with respect to additional cis motifs might determine P1BS function.

To analyse the capacity of P1BS to mediate Pi starvation responsiveness, we fused four tandem copies of P1BS to the −46 minimal 35S promoter from CaMV (4xP1BS:GUS) [45]. Transgenic plants harbouring this construct were fully responsive to Pi starvation (9 of 10 independent lines). We chose one of these lines to study the specificity of Pi starvation responsiveness and the effect of known agonists (sucrose) [46][48] or antagonists (cytokinins and arsenate) [39], [46], [49]. As in the case of IPS1:GUS, the 4xP1BS:GUS construct was highly responsive to Pi starvation, but not to other types of stress (nitrogen, potassium and sulphur starvation, and salt and osmotic stress); in addition, it was responsive to the stimulatory effects of sucrose and the repressing effect of arsenate and cytokinins (Figure 6A and 6B).

P1BS is an integrator <i>cis</i> motif in Pi starvation signalling.
Fig. 6. P1BS is an integrator cis motif in Pi starvation signalling.
(A–C) Histochemical analysis of GUS activity driven by IPS1:GUS (IPS1) and 4xP1BS:GUS, a reporter gene containing a synthetic promoter harbouring four tandem copies of P1BS fused to the −46 minimal 35S promoter from CaMV (4xP1BS). (A) Response of reporter genes to different types of nutrient starvation stress and to salt and osmotic stress. Plants were grown for 7 days in +Pi or −Pi medium, or media lacking potassium (−K), nitrogen (−N) or sulphur (−S). The effect of saline and osmotic stress was analysed in plants grown for 7 days in complete media supplemented with 150 mM NaCl (NaCl) or 300 mM mannitol (Man), respectively. (B) Response of reporter genes to known agonists (sucrose) or antagonists (cytokinins, arsenate) of the Pi starvation response. To analyse the effect of sucrose, plants were grown for 7 days in +Pi medium in low sucrose (0.1%) and transferred for 3 days to −Pi medium containing two concentrations of sucrose (0.1% or 3%; left). To examine the cytokinin effect, plants were grown for 5 days in −Pi medium, alone or with 2 µM kinetin (Kin; centre). Plants (right) were grown for 7 days in complete liquid medium and transferred for 4 days to +Pi or −Pi media alone or with 30 µM arsenate [As(V)]. (C) Response of reporter genes to long distance repression in a split root assay. Plants were grown for 7 days in complete medium, for 4 additional days on −Pi medium, then transferred for 4 days to split plates with compartments containing +Pi or −Pi media as indicated. (D) Model showing the integrator role of P1BS and consequently PHR1(-like) in Pi starvation signalling.

Systemic repression is a characteristic type of control in nutrient physiology; it stands for the fact that most responses to nutritional deficiency are determined by shoot nutritional status rather than by the local nutrient concentration in the vicinity of the root system [50]. To evaluate whether systemic repression is signalled through P1BS, we used a split root assay in which part of the root system of Pi-starved plants was placed in Pi-lacking medium and the other part in Pi-rich medium. GUS activity was not detected in the Pi-lacking parts of the roots in the split root assay (Figure 6C). These results define P1BS and, consequently, PHR1(-like) TF as central integrators in Pi starvation signalling (Figure 6D).

Phylogenetic footprinting shows combinatorial action of P1BS in Pi starvation responsiveness of wild type promoters

To examine whether P1BS sequences are sufficient in the context of a natural promoter to mediate Pi starvation responsiveness, we performed phylogenetic footprinting analysis to search for conserved cis-regulatory regions that could be relevant in the control of gene expression. For this analysis, we examined the promoter of the highly specific Pi starvation- responsive IPS1 gene. Using oligo-adapted PCR amplification with a conserved region of IPS1, we amplified fragments containing the promoter region of orthologous genes from four different Brassicaceae species (Figure S9). Sequence alignment showed two highly conserved regions, spanning from nt −626 to −527 and from nt −280 to −109 from the first ATG in the transcribed region of IPS1 (Figure S9). As this analysis did not provide sufficient resolution to identify cis-regulatory motifs, we included At4 in the alignment, as it is also responsive to Pi starvation and is the most closely related IPS1 homologue in Arabidopsis [25]; we thus delimited the candidates for cis-regulatory sequences to six short motifs (motifs A to E and P1BS1; Figure 7 and Figure S9). Further inspection of additional members of the family in Arabidopsis and other species such as tomato, medicago, maize and poplar showed that two of these six conserved motifs were also conserved outside the Brassicaceae family (P1BS1 and B motifs; Figure 7A). Fusion of the region encompassing motifs A-P1BS-B to the −46 minimal 35S promoter (A-P1BS-B:GUS) showed that this region is sufficient to mediate Pi starvation responsiveness of a GUS reporter gene (Figure 7B and 7C). Mutational analyses indicated that whereas impairment of motif A had no effect, mutation of motif B abolished Pi starvation responsiveness and resulted in weak constitutive expression of the mutant gene (Figure 7B and 7C). These results indicate that motif B acts in concert with P1BS to mediate Pi starvation responsiveness.

Phylogenetic footprinting and mutational analysis of the <i>IPS1</i> promoter.
Fig. 7. Phylogenetic footprinting and mutational analysis of the IPS1 promoter.
(A) Alignment of the promoter region of IPS1 from five Brassicaceae species (Arabidopsis thaliana, Descurainia sophia, Brassica intermedia, Arabis auriculata and Lepidium campestre), which is conserved in the highly related At4 gene. A consensus sequence is shown indicating conservation of P1BS closely linked to motif B in the promoter of more distant IPS1-related genes from Arabidopsis and from other species (Medicago truncatula, Solanum lycopersicum, Populus trichocarpa and Zea mays). Conserved regions between IPS1 orthologs and At4 are boxed; the P1BS1 and B motifs conserved in distantly related IPS1 family members are shown in green and blue, respectively. The P1BS2 motif conserved only among IPS1 orthologues is highlighted (pale green). (B) Diagram shows different IPS1 promoter-derived reporter constructs: wild type 1 kb IPS1 promoter region (IPS1 wt), including P1BS (green boxes), motif B (blue box) and motifs A, C, D and E (black boxes); a 42-bp IPS1 promoter fragment (A-P1BS-B), including motifs A, P1BS1 and B; four tandem copies of motif B (4xB). Both A-P1BS-B and 4xB were fused to the −46 minimal promoter from the CaMV 35S gene fused to the coding region of the GUS reporter; versions of the IPS1 promoter with either motif A or motif B mutated (red boxes) were fused to the coding region of the GUS reporter. (C) Histochemical analysis of GUS activity driven by wild type IPS1:GUS and derived reporter constructs. Plants were grown for 7 days in +Pi or −Pi media.

We also analysed whether motif B could drive Pi starvation inducibility, as is the case of P1BS. An artificial gene containing four tandem copies of motif B fused to the -46 minimal 35S promoter from CaMV and the GUS coding region (4xB:GUS) did not show any GUS activity, even in Pi starvation conditions (10 of 10 independent transgenic lines; Figure 7B and 7C).

To evaluate a possible informatic approach to predict the relevance of motif B and not of other conserved motifs in the context of Pi starvation responsiveness, we examined whether the conserved motifs A and B were overrepresented in the promoters of our set of Pi starvation-responsive genes. Neither of these conserved motifs were significantly overrepresented; nonetheless, we found a clear overrepresentation of motif B in combination with P1BS when the distance between the two motifs was restricted to 25 nt (26 observed vs. 12.4 predicted, p<0.0002; Table S6). These data, including the result using the artificial 4xB:GUS gene, strongly suggest that the role of motif B in Pi starvation responsiveness is subsumed to that of P1BS, and that it is likely that PHR1(-like) proteins interact with a yet to be identified TF that interacts with motif B, directly or via a co-adaptor protein.

Discussion

Plants rely on adaptive systems to protect themselves from different types of stress. One of these adaptive systems is that for Pi starvation stress, in which transcription factor PHR1 from the MYB-CC family plays an important regulatory role [12], although its extent remains unknown. Based on physiological and transcriptomic analysis of plants with altered expression of PHR1 and of the closely related gene PHL1, in this study we i) show the central role of PHR1 and functionally redundant PHL1 in the control of Pi starvation responses, ii) identify PHR1 direct targets and the potential importance of pre-existing, shared regulatory components in PHR1-mediated indirect control, and iii) highlight the relevance of the PHR1 binding site (P1BS), in concert with other cis-regulatory motifs, in the direct control of Pi starvation-induced genes by PHR1. This type of regulatory architecture, involving a central integrator based on a single class of transcription factor, makes Pi starvation stress a suitable system in which to gain insights into general plant stress physiology, including the role of transcriptional repression in stress responses.

Central role of functionally redundant PHR1 and PHL1 in the control of plant responses to Pi starvation

The partial functional redundancy between PHR1 and PHL1 is indicated by the additive or synergistic effects of mutations in these two genes on most of the traits examined, including transcriptional responsiveness to Pi starvation. Redundancy probably involves additional members of the MYC-CC family, since mutation of both PHR1 and PHL1 does not fully abolish Pi starvation responses. For instance, IPS1 is still weakly responsive in the phr1 phl1 double mutant, and we demonstrate that mutation of a P1BS site in IPS1 completely abolishes the Pi starvation response of this promoter (Figure 1B and Figure 5B). In line with this partial functional redundancy, PHR1 and PHL1 have similar DNA binding specificity and can heterodimerise.

The use of plants with different PHR1(-like) activity levels (phr1 and phl1 single mutants, phr1 phl1 double mutant, and PHR1-overexpressing plants) confirmed the essential role of PHR1 and PHL1 in the control of intracellular Pi concentrations and anthocyanin accumulation [12], as well as in other aspects of the response, such as root hair length, silique formation and senescence (Figure 2). The observed effect of phr1 and phl1 mutations on Pi levels of plants grown under a Pi rich regimen contrasts with the limited effect of these mutations on expression of Pi starvation induced genes in plants grown under these conditions. This could reflect a partial compensation of a lower amount of PHR1(-like) protein in these mutants with a higher activity of the remaining PHR1(-like) protein (likely encoded by PHR1-related genes), as the level of Pi, which inhibits PHR1(like), in mutants grown in +Pi medium is lower than in the wild type. The observed effect of the phr1 mutation on root hair formation supports a previous finding in rice, in which overexpression of a rice PHR1 homologue was shown to affect root hair length and density [33]. Given that root hair response is dependent on local Pi concentration in the root surroundings rather that on shoot Pi concentration [51], our data indicate that PHR1 also controls at least part of local Pi-dependent responses. The results also show the importance of a proper response to nutrient stress for reproductive success, which is enhanced in PHR1-overexpresssing plants (Figure 2).

Our transcriptomic analyses reveal the large quantitative dimension of the Pi starvation transcriptional response and the central regulatory role of PHR1 and PHL1. A total of 4170 genes, representing 18.5% of the genes analysed, displayed Pi starvation responsiveness (Table 1); of these, 75% of induced and 65% of repressed genes showed decreased and increased expression, respectively, in the Pi-starved phr1 phl1 double mutant (Table 1), indicative of reduced responsiveness in the mutant lines. There is no precedent for a small number of related TF controlling a complex stress response to such a large extent, although a quantitatively similar role was described for two Snf1-related kinases, KIN10 and KIN11, that act as central integrators in sugar/energy depletion responses [52].

As for physiological and developmental responses, many Pi starvation-responsive genes are also responsive to other stresses, yet their responsiveness to Pi starvation is compromised in the phr1 and phr1 phl1 mutants. Non-specific molecular responses can thus be controlled by stress type-specific regulatory systems. A paradigmatic example of this is represented by general stress response (GSR) genes; these genes, identified in two independent studies, have been ascribed to an independent regulatory system [4], [5]. Nonetheless, a large proportion of Pi starvation-responsive GSR genes are controlled by PHR1(-like) (Table 2). One way to reconcile the existence of an independent regulatory system for GSR genes and the observation that they are controlled by PHR1(-like) TF is that PHR1(-like) TF exert their regulatory role on these genes by acting on the GSR regulatory system.

Also noteworthy is the finding that 65% of the genes repressed by Pi starvation are more highly expressed in the phr1 phl1 double mutant than in wild type after Pi starvation (Table 1). This indicates that a large proportion of the transcriptional repression response is also an integral part of the adaptive response, since it is evident that the phr1 phl1 double mutant is more sensitive to Pi starvation, as it cannot mount a correct response (Figure 2B).

Direct and indirect control of the molecular response to Pi starvation by PHR1(-like) TF

Here we show that PHR1(-like) regulation of Pi starvation-responsive genes involves both direct and indirect control. Direct control is essentially exerted on induced genes containing the P1BS (GNATATNC) sequence [12], whereas transcriptional repression is essentially indirect. Indeed, it can be noted that genes identified as direct targets (in which activation is independent of protein translation) are highly enriched in Pi starvation-induced genes containing P1BS sequences in different parts of the gene, particularly in the promoter proximal region and even to a higher extent in the 5′UTR. This indicates that PHR1 acts most prominently as a transcriptional activator, and that control of transcriptional repression is mostly, if not completely indirect (e.g., via activation of a transcriptional repressor). A large proportion of the Pi starvation-induced genes (more than 70%) are also probably controlled indirectly by PHR1, since only about 30% of Pi starvation-induced genes have a P1BS motif in their promoter proximal region, 5′UTR or 3′UTR, where P1BS content is significantly higher than in an average Arabidopsis gene.

Another finding is the strong association between P1BS content in the promoter and the degree of Pi starvation inducibility (Figure 4). It is interesting that although other regions are also P1BS-enriched, particularly the 5′UTR, but also the 3′UTR, introns and 1 kb proximal downstream region of Pi starvation-responsive genes, P1BS content in these regions does not correlate with inducibility. This suggests that the role of P1BS differs qualitatively in these regions compared to its role in the promoter.

The correlation between P1BS content in the promoter and gene inducibility is not strict, however; for IPS1, we show that one of the P1BS motifs in its promoter is in fact dispensable for Pi starvation responsiveness. In any case, the higher P1BS content of highly upregulated genes suggests that bioinformatic searches for stimulus-specific cis-regulatory motifs will be more efficient if performed in highly responsive genes.

Taken together, these observations suggest a simple evolutionary path to construct a complex adaptive response to a specific stress type, under the control of a central regulatory system. Our data are in agreement with a central regulator that controls pre-existing, shared genetic networks by acting on the regulators of those networks, as it is probably the case of GSR genes, rather than on each individual gene. In line with this idea, we found that in most cases, TF genes and non-TF genes are equally over-represented in the sets of genes responsive to Pi starvation and to any other type of stress (Table S3); we would predict under-representation of TF genes if shared genes were exclusively controlled by independent stress type-specific regulators. Genes for which the transcription rate obtained via this indirect route was insufficient, as could be the case of RNS1 (see below), might have been recruited under the direct control of the central regulator, similar to the situation in Pi starvation-specific networks.

Importance of P1BS cis-regulatory element as an integrator in the response to Pi starvation: concerted action in vivo with other cis-regulatory motifs

Here we demonstrate the key importance of P1BS in Pi starvation gene inducibility, reinforcing the importance of PHR1. In addition to the fact that P1BS is overrepresented in phosphate starvation-induced genes, as shown here and elsewhere [9], [11], P1BS is highly conserved in a Pi starvation-responsive gene (IPS1). Mutation of critical P1BS motifs in promoters of Pi-responsive genes abolishes Pi starvation responsiveness in dicots and monocots (Figure 5) [53], and a minimal promoter containing four tandem copies of P1BS is specifically responsive to Pi starvation (Figure 6).

The fact that a minimal promoter containing P1BS specifically responds to Pi starvation allowed us to examine the effect of several modulators of the Pi starvation response, and to show that this element can recapitulate Pi starvation-specific responsiveness (Figure 6); this includes the effect of all the best known modulators of this response, such as sugars, cytokinins, arsenate and long distance systemic repression [11], [46][50]. These data qualifys P1BS and, consequently, PHR1(-like) TF as central integrators of the Pi starvation response (Figure 6D).

By analysing the function of a promoter responsive to Pi starvation and wounding (RNS1) [43], we show that the P1BS motif is necessary only for Pi starvation responsiveness and not for responsiveness to other types of stress. Conversely, mutation of PHR1 and PHL1 affect only RNS1 responsiveness to Pi starvation and not to other stress types (Figure 5). Independent multisignal responsiveness can thus also be attained through independent cis motifs in the promoter.

Although our data indicate the importance of P1BS as a Pi starvation response cis motif, we also show that P1BS function is dependent on sequence context, and that P1BS alone is insufficient to drive Pi starvation responsiveness in the context of a natural promoter such as that of IPS1 (Figure 5 and Figure 7). Indeed, our phylogenetic and mutational analysis of IPS1 identified a second motif, motif B (GAWGATNC), necessary for correct Pi starvation responsiveness of IPS1. The conditional overrepresentation of motif B, dependent on the presence of P1BS (Table S6), and the finding that motif B is unable to drive Pi starvation responsiveness strengthens the idea that PHR1 and P1BS represent a central integrator module in Pi starvation responsiveness.

Conclusions

The results of this study show that PHR1 and a functionally related member of its family comprise a central integrator system for the Pi starvation response. Pi limitation is a common condition in many natural soils, which implies that selective pressure against this stress has been very strong throughout evolution, underlining the adaptive value of this simple regulatory system of such a complex response. A consequence of our finding that a single TF family largely controls a stress response is that transcriptionally overlapping programs in response to different stress types can ultimately be controlled by independent regulatory systems. Such systems act indirectly, using (pre-existing) shared regulatory components in many targets, and directly on the remaining small proportion of target genes on average highly enriched in P1BS. The finding that the 5′UTR of PHR1 primary targets and of Pi starvation induced genes shows the highest overrepresentation in P1BS sequences, raises the possibility of an important role of this region in transcriptional control, in addition to its most commonly associated role in translational control. The fact that a large proportion of the transcriptionally repressed genes are controlled by PHR1(-like) TF indicates that transcriptional repression is an integral part of the Pi starvation response, and not merely a consequence of plant malfunction under stress.

Materials and Methods

Plant material and growth conditions

All Arabidopsis thaliana plants used in this study, including mutants and transgenic plants, were on the Columbia (Col-0) background. phl1 was obtained from the SAIL collection (SAIL_731_B09) [54]. Growth conditions and the complete Johnson medium containing 2 mM Pi (KH2PO4) and 2% sucrose were as described [22], [55]. For specific experiments, the concentration of Pi, sucrose, kinetine or arsenate (NaH2AsO4·7H2O) is indicated.

Physiological measurements

Anthocyanin was extracted from rosettes of plants grown on Pi-lacking medium supplemented with 5 µM DEX for 12 days. Anthocyanin content was measured as described [56]. The method of Ames [57] was used to determine the cellular phosphate content of seedlings grown on complete medium for 12 days (supplemented with 5 µM DEX when specified). Mean values were compared using Student's t-test.

Constructs for expression in plants and plant transformation

Plants were transformed by the vacuum infiltration method [58]. Routine molecular work was performed as described [12], [59], except where indicated. Sequences of primers used for PCR amplification and construction of genomic DNA/cDNA fragments are given in Table S7.

A NcoI-SpeI fragment containing the ORF of PHR1 was amplified by PCR from the PHR1 cDNA [12] purified and digested with NcoI and SpeI. This fragment was introduced into the binary vector pBHAGR, which contains the CaMV 35S promoter, the 3xHA epitope and a fragment of the rat glucocorticoid receptor (GR) cDNA encoding the receptor-binding domain, generating the recombinant expression cassette 35S:HA:GR:PHR1 (pBHAGRPHR1). The pBHAGR vector was generated introducing a BamHI-NcoI cDNA fragment codifying for the 277 carboxy-terminal amino acids of the rat glucocorticoid receptor [60] into a binary vector pBHA kindly supplied by Dr. F. Parcy (Institut National de la Recherche Agronomique, Grenoble, France).

The HindIII-BamHI 1kb fragment containing the IPS1 promoter and the XbaI-blunt 1kb fragment containing the RNS1 promoter were amplified by PCR. The mutated promoter sequences were generated as overlapping PCR products using semi-complementary primers with the mutated sequences. The PCR products were purified, digested with HindIII-BamHI (IPS1) or XbaI (RNS1) and inserted between HindIII-BamHI or XbaI-SmaI sites into the pBI101 vector [44].

The four tandem copies of P1BS (4xP1BS:GUS), the B motif (4xB:GUS) constructs, and the 42bp IPS1 promoter fragment (A-P1BS-B:GUS) were generated by annealing semi-complementary primers, resulting in DNA fragments with HindIII and XbaI overhangs. The over-hanged DNA fragments were inserted between HindIII and XbaI sites at the 5′ end of a minimal 35S promoter in the pTi0046 plasmid. The pTi0046 plasmid contains a −46bp truncated version of the CaMV 35S promoter [45] into the BamHI site of the pBI101 vector.

Real-Time PCR

Quantitative PCR (Q-RT-PCR) was performed on three independent biological samples as described [61]. The pairs of primers used are described in Table S7.

Protein synthesis, DNA binding reactions and EMSA analysis

PHR1 and PHL1 deletion derivatives were generated by in vitro translation (or cotranslation in the dimerization experiments) using the TnT T7 Quick System for PCR DNA (Promega), as described [62]. PCR and labeling of promoter fragments and oligonucleotides, DNA binding reactions and EMSA were performed as described [63].

Yeast two-hybrid assays

A cDNA fragment corresponding to a deletion derivative of PHR1, Δ-PHR1, encompassing amino acid residues 208–362, that lacks transactivation domain was cloned into the pGBKT7 (Gal4 DNA binding domain, BD; Clontech). We used this to screen a whole seedling cDNA library prepared in the pGADT7 vector (Gal4 activation domain, AD, Clontech) to detect PHR1-interacting proteins. One of these was Δ-PHL1 (lacking amino acids 1–60, details to be described elsewhere). To confirm protein interactions, the plasmids were cotransformed in Saccharomyces cerevisiae AH 109 cells following standard heat-shock protocols [64]. Successfully transformed colonies were identified on yeast synthetic drop-out lacking Leu and Trp; these colonies were resuspended in 30 mM NaCl and transferred to the same media plus β-gal or to selective media lacking Ade, His, Leu and Trp. Plates were incubated (30°C, 2–4 days). The empty vector pGADT7 was also cotransformed with the pGBKT7-DPHR1 construct as a negative control.

Transcriptome analyses of Pi starvation response and of PHR1 direct targets

Transcriptomic analyses were performed using the Affymetrix ATH1 platform. For the phosphate starvation response analysis, wt, phr1 and phr1 phl1 plants were grown for 7 days in complete (+Pi) or phosphate-lacking (−Pi) solid media, and roots and shoots were processed separately. For PHR1 direct target analysis, complete OxGR:PHR1 phr1 and phr1 plants were grown for 7 days in +Pi liquid media, then for 2 days in −Pi liquid media and harvested after 6 h treatment with 5 µM DEX and 10 µM CHX. In each experiment, RNA was isolated from three independent biological samples using the RNeasy plant mini kit (Quiagen). Biotin-labeled cRNA was synthesized using One-Cycle target labelling and control reagents (Affymetrix, Santa Clara, CA) and fragmented into 35–200 bases in length. Three replicates for each condition were hybridized independently to the Arabidopsis ATH1 Genome array following manufacturer's recommendations (Affymetrix). Each microarray was washed and stained with streptavidin-phycoerythrin and scanned at 2.5 µm resolution in a GeneChip Scanner 3000 7G System (Affymetrix). Data analyses were performed using GeneChip Operating Software (GCOS) and analyzed using the affylmGUIR package [65]. Robust Muti-array Analysis (RMA) algorithm was used for background correction, normalization and expression levels summarization [66]. Differential expression analysis was performed with the Bayes t-statistics from the linear models for Microarray data (limma). P-values were corrected for multiple-testing using the Benjamini-Hochberg method (False Discovery Rate) [67]. Except where indicated, genes were considered to be differentially expressed if corrected P values were <0.05, and only genes with a signal log ratio more than one or less than minus one were considered for further analysis.

Transcriptome comparisons

For transcriptome comparisons we used microarray data for different treatments/stresses available in the GENEVESTIGATOR database (https://www.genevestigator.com) [30]. The two-fold up- and down-regulated genes were identified by the Meta-Analyser tool included in this platform. Transcription factor genes for transcriptomic analysis were identified in the RARTF Database (http://rarge.psc.riken.jp/rartf/) [68].

Mapman ontology display

Average expression signals for the Pi starvation treatment were expressed relative to those in complete media, converted to a log2 scale and imported into the MapMan software, which showed values in colour scale diagrams (http://mapman.gabipd.org/web/guest/home) [35].

Isolation of promoter regions

The promoters regions of gene orthologs were obtained using commercially available GenomeWalker technology (Clontech), following manufacturer's recommendations. Sequences of interest were obtained by two rounds of PCR amplification using as template the adapter-ligated genomic DNA from different Brassicaceae species, an IPS1-specific primer and the adaptor primer. Primary PCR was performed with seven cycles of 25 sec at 94°C and 4 min at 72°C, followed by 32 cycles of 25 sec at 94°C and 4 min at 67°C, with a final extension of 4 min at 67°C. Secondary PCR was performed using a 1∶50 dilution of the primary reaction product as a template and similar PCR cycling parameters, with 5 and 22 cycles of the first and second steps, respectively. PCR products were cloned into the pCRII-TOPO TA system (Invitrogen). Sequences were aligned using DiAlign (http://www.genomatix.de/cgi-bin/dialign/dialign.pl) [69].

Phylogenetic analysis of the MYB-CC family

The analysis was performed on the Phylogeny.fr platform (www.phylogeny.fr) [70]. Sequences were aligned with MUSCLE (v3.7) configured for highest accuracy. After alignment, ambiguous regions were removed with Gblocks (v0.91b). The phylogenetic tree was reconstructed using PhyML program (v3.0 aLRT). The default substitution model was selected assuming an estimated proportion of invariant sites (of 0.021) and 4 gamma-distributed rate categories to account for rate heterogeneity across sites. The gamma shape parameter was estimated directly from the data (gamma = 1.044). Reliability for internal branch was assessed using the bootstrapping method (100 bootstrap replicates). The tree was represented withTreeDyn (v198.3).

Accession Numbers

Arabidopsis Genome Initiative locus identifiers for the genes mentioned in this article are At5g29000 (PHL1), At4g28610 (PHR1), At5g43350 (PHT1;1), At2g02990 (RNS1), At3g09922 (IPS1), At5g20150 (SPX1), At5g03545 (At4), At4g33030 (SQD1) and At3g17790 (ACP5). The GenBank accession numbers for the sequences of the proximal promoter region of IPS1 orthologs are GQ184774 (Descurainia sophia, DsIPS1), GQ184775 (Arabis auriculata, AaIPS1), GQ184776 (Brassica intermedia, BiIPS1) and GQ184777 (Lepidium campestre, LcIPS1). The GEO accession number for the array experiments are GSE16722 and GSE20955.

Supporting Information

Attachment 1

Attachment 2

Attachment 3

Attachment 4

Attachment 5

Attachment 6

Attachment 7

Attachment 8

Attachment 9

Attachment 10

Attachment 11

Attachment 12

Attachment 13

Attachment 14

Attachment 15

Attachment 16


Zdroje

1. DixonRA

PaivaNL

1995 Stress-Induced Phenylpropanoid Metabolism. Plant Cell 7 1085 1097

2. MolJ

JenkinsG

SchäferE

WeissD

1996 Signal perception, transduction, and gene expression involved in anthocyanin. Crit Rev Plant Sci 15 525 557

3. LimPO

KimHJ

NamHG

2007 Leaf senescence. Annu Rev Plant Biol 58 115 136

4. MaS

BohnertHJ

2007 Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression. Genome Biol 8 R49

5. WalleyJW

CoughlanS

HudsonME

CovingtonMF

KaspiR

2007 Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3 1800 1812

6. HammondJP

BennettMJ

BowenHC

BroadleyMR

EastwoodDC

2003 Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132 578 596

7. WasakiJ

YonetaniR

KurodaS

2003 Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26 1515 1523

8. WuP

MaL

HouX

WangM

WuY

2003 Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132 1260 1271

9. MissonJ

RaghothamaKG

JainA

JouhetJ

BlockMA

2005 A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102 11934 11939

10. MorcuendeR

BariR

GibonY

ZhengW

PantBD

2007 Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30 85 112

11. MullerR

MorantM

JarmerH

NilssonL

NielsenTH

2007 Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143 156 171

12. RubioV

LinharesF

SolanoR

MartinAC

IglesiasJ

2001 A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15 2122 2133

13. YiK

WuZ

ZhouJ

DuL

GuoL

2005 OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138 2087 2096

14. ChenZH

NimmoGA

JenkinsGI

NimmoHG

2007 BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 405 191 198

15. DevaiahBN

KarthikeyanAS

RaghothamaKG

2007 WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143 1789 1801

16. DevaiahBN

NagarajanVK

RaghothamaKG

2007 Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145 147 159

17. DevaiahB

MadhuvanthiR

KarthikeyanAS

RaghothamaKG

2009 Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis. Molec Plant 2 43 58

18. MiuraK

RusA

SharkhuuA

YokoiS

KarthikeyanAS

2005 The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci USA 102 7760 7765

19. AungK

LinSI

WuCC

HuangYT

SuCL

2006 pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141 1000 1011

20. BariR

Datt PantB

StittM

ScheibleWR

2006 PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141 988 999

21. LinSI

ChiangSF

LinWY

ChenJW

TsengCY

2008 Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol 147 732 746

22. GonzalezE

SolanoR

RubioV

LeyvaA

Paz-AresJ

2005 PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17 3500 3512

23. FujiiH

ChiouTJ

LinSI

AungK

ZhuJK

2005 A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15 2038 2043

24. ChiouTJ

AungK

LinSI

WuCC

ChiangSF

2006 Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell 18 412 421

25. Franco-ZorrillaJM

ValliA

TodescoM

MateosI

PugaMI

2007 Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39 1033 1037

26. HsiehLC

LinSI

ShihAC

ChenJW

LinWY

2009 Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151 2120 32

27. PantBD

Musialak-LangeM

NucP

MayP

BuhtzA

2009 Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150 1541 1555

28. DuanK

YiK

DangL

HuangH

WuW

2008 Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J 54 965 975

29. WangC

YingS

HuangH

LiK

WuP

2009 Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57 895 904

30. ZimmermannP

Hirsch-HoffmannM

HennigL

GruissemW

2004 GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136 2621 2632

31. AoyamaT

ChuaNH

1997 A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11 605 612

32. NilssonL

MullerR

NielsenTH

2007 Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30 1499 1512

33. ZhouJ

JiaoF

WuZ

LiY

WangX

2008 OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146 4 1673 1686

34. HopeIA

StruhlK

1987 GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6 9 2781 2784

35. ThimmO

BläsingO

GibonY

NagelA

MeyerS

2004 MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37 914 939

36. YuB

XuC

BenningC

2002 Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99 5732 5737

37. JouhetJ

MaréchalE

BaldanB

BlignyR

JoyardJ

2004 Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167 863 874

38. BenningC

OthaH

2005 Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J Biol Chem 280 2397 2400

39. RubioV

BustosR

IrigoyenML

Cardona-LopezX

Rojas-TrianaM

2009 Plant hormones and nutrient signaling. Plant Mol Biol 69 361 373

40. GalaktionovK

ChenX

BeachD

1996 Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382 511 517

41. SablowskiRW

MeyerowitzEM

1998 A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92 93 103

42. MartinAC

del PozoJC

IglesiasJ

RubioV

SolanoR

2000 Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24 559 567

43. LeBrasseurND

MacIntoshGC

Perez-AmadorMA

SaitohM

GreenPJ

2002 Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant J 29 393 403

44. JeffersonRA

KavanaughTA

BevanMW

1987 GUS fusions: beta-glucuronidase as a sensitive and versatile gene RT fusion marker in higher plants. EMBO J 6 3901 3907

45. UlmasovT

LiuZB

HagenG

GuilfoyleTJ

1995 Composite Structure of Auxin Response Elements. Plant Cell 7 1611 1623

46. Franco-ZorrillaJM

MartínAC

LeyvaA

Paz-AresJ

2005 Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138 847 857

47. KarthikeyanAS

VaradarajanDK

JainA

HeldMA

CarpitaNC

2007 Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225 907 918

48. HammondJP

WhitePJ

2008 Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59 93 109

49. CatarechaP

SeguraMD

Franco-ZorrillaJM

Garcia-PonceB

LanzaM

2007 A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19 1123 1133

50. LiuTY

ChangCY

ChiouTJ

2009 The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12 312 319

51. BatesTR

LynchJP

1996 Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19 529 538

52. Baena-GonzalezE

RollandF

TheveleinJM

SheenJ

2007 A central integrator of transcription networks in plant stress and energy signalling. Nature 448 938 942

53. SchünmannPH

RichardsonAE

VickersCE

DelhaizeE

2004 Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiology1 36 4205 4214

54. SessionsA

BurkeE

PrestingG

AuxG

McElverJ

2002 A high-throughput Arabidopsis reverse genetics system. Plant Cell 14 2985 2994

55. JohnsonCM

StoutPR

BroyerTC

CarltonAB

1957 Comparative chlorine requirements of different plants species. Plant Soil 8 337 353

56. SwainTR

HillisWE

1959 Phenolic constituents of Prunus domestica. I. Quantitative analysis of phenolic constituents. J Sci Food Agr 10 63 68

57. AmesBN

1966 Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8 115 118

58. BechtoldN

EllisJ

PelletierG

1993 In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316 15 18

59. SambrookJ

FritschEF

ManiatisT

1989 Molecular Cloning: A Laboratory Manual, 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press)

60. MiesfeldR

RusconiS

GodowskiPJ

MalerBA

OkretS

1986 Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46 369 399

61. Aguilar-MartínezJA

Poza-CarriónC

CubasP

2007 Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19 458 72

62. RomeroI

FuertesA

BenitoMJ

MalpicaJM

LeyvaA

1998 More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J 14 273 284

63. SolanoR

NietoC

Paz-AresJ

1995 MYB.Ph3 transcription factor from Petunia hybrida induces similar DNA-bending/distortions on its two types of binding site. Plant J 8 673 682

64. ChiniA

FonsecaS

FernándezG

AdieB

ChicoJM

2007 The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448 666 671

65. WettenhallJM

SimpsonKM

SatterleyK

SmythGK

2006 affylmGUI: a graphical user interface for linear modeling of single channel microarray data. Bioinformatics 22 897 899

66. IrizarryRA

HobbsB

CollinF

Beazer-BarclayYD

AntonellisKJ

2003 Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4 249 264

67. ReinerA

YekutieliD

BenjaminiY

2003 Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19 368 375

68. IidaK

SekiM

SakuraiT

SatouM

AkiyamaK

2005 RARTF: Database and Tools for Complete Sets of Arabidopsis Transcription Factors. DNA Res 12 247 256

69. MorgensternB

DressA

WernerT

1996 Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc Natl Acad Sci USA 93 12098 12103

70. DereeperA

GuignonV

BlancG

AudicS

BuffetS

2008 Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 W465 W469

71. BonkeM

ThitamadeeS

MahonenAP

HauserMT

HelariuttaY

2003 APL regulates vascular tissue identity in Arabidopsis. Nature 426 181 186

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2010 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#