ARID1A regulates R-loop associated DNA replication stress

Autoři: Shuhe Tsai aff001;  Louis-Alexandre Fournier aff001;  Emily Yun-chia Chang aff001;  James P. Wells aff001;  Sean W. Minaker aff001;  Yi Dan Zhu aff001;  Alan Ying-Hsu Wang aff001;  Yemin Wang aff002;  David G. Huntsman aff002;  Peter C. Stirling aff001
Působiště autorů: Terry Fox Laboratory, BC Cancer, Vancouver, Canada aff001;  Department of Molecular Oncology, BC Cancer, Vancouver, Canada aff002;  Department of Medical Genetics, University of British Columbia, Vancouver, Canada aff003
Vyšlo v časopise: ARID1A regulates R-loop associated DNA replication stress. PLoS Genet 17(4): e1009238. doi:10.1371/journal.pgen.1009238
Kategorie: Research Article
doi: 10.1371/journal.pgen.1009238


ARID1A is a core DNA-binding subunit of the BAF chromatin remodeling complex, and is lost in up to 7% of all cancers. The frequency of ARID1A loss increases in certain cancer types, such as clear cell ovarian carcinoma where ARID1A protein is lost in about 50% of cases. While the impact of ARID1A loss on the function of the BAF chromatin remodeling complexes is likely to drive oncogenic gene expression programs in specific contexts, ARID1A also binds genome stability regulators such as ATR and TOP2. Here we show that ARID1A loss leads to DNA replication stress associated with R-loops and transcription-replication conflicts in human cells. These effects correlate with altered transcription and replication dynamics in ARID1A knockout cells and to reduced TOP2A binding at R-loop sites. Together this work extends mechanisms of replication stress in ARID1A deficient cells with implications for targeting ARID1A deficient cancers.

Klíčová slova:

Cell staining – DNA damage – DNA replication – DNA transcription – Genomics – Chromatin – Immunoprecipitation – Small interfering RNA


1. Wells JP, White J, Stirling PC. R Loops and Their Composite Cancer Connections. Trends Cancer. 2019;5: 619–631. doi: 10.1016/j.trecan.2019.08.006 31706509

2. Yeo CQX, Alexander I, Lin Z, Lim S, Aning OA, Kumar R, et al. p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication. Cell Rep. 2016;15: 132–146. doi: 10.1016/j.celrep.2016.03.011 27052176

3. Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature. 2014;511: 362–365. doi: 10.1038/nature13374 24896180

4. Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N, et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7: 13087. doi: 10.1038/ncomms13087 27725641

5. Gorthi A, Romero JC, Loranc E, Cao L, Lawrence LA, Goodale E, et al. EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature. 2018;555: 387–391. doi: 10.1038/nature25748 29513652

6. Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang C-C, et al. The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription. Mol Cell. 2015;60: 351–361. doi: 10.1016/j.molcel.2015.09.012 26593718

7. Jones SE, Fleuren EDG, Frankum J, Konde A, Williamson CT, Krastev DB, et al. ATR Is a Therapeutic Target in Synovial Sarcoma. Cancer Res. 2017;77: 7014–7026. doi: 10.1158/0008-5472.CAN-17-2056 29038346

8. Gaillard H, Aguilera A. Transcription as a Threat to Genome Integrity. Annu Rev Biochem. 2016;85: 291–317. doi: 10.1146/annurev-biochem-060815-014908 27023844

9. Crossley MP, Bocek M, Cimprich KA. R-Loops as Cellular Regulators and Genomic Threats. Mol Cell. 2019;73: 398–411. doi: 10.1016/j.molcel.2019.01.024 30735654

10. Hodges C, Kirkland JG, Crabtree GR. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med. 2016;6. doi: 10.1101/cshperspect.a026930 27413115

11. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature. 2013;497: 624–627. doi: 10.1038/nature12146 23698369

12. Peng G, Yim E-K, Dai H, Jackson AP, Burgt I van der, Pan M-R, et al. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol. 2009;11: 865–872. doi: 10.1038/ncb1895 19525936

13. Qi W, Wang R, Chen H, Wang X, Xiao T, Boldogh I, et al. BRG1 promotes the repair of DNA double-strand breaks by facilitating the replacement of RPA with RAD51. J Cell Sci. 2015;128: 317–330. doi: 10.1242/jcs.159103 25395584

14. Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S, et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene. 2011;30: 2135–2146. doi: 10.1038/onc.2010.592 21217779

15. Park Y, Chui MH, Suryo Rahmanto Y, Yu Z-C, Shamanna RA, Bellani MA, et al. Loss of ARID1A in Tumor Cells Renders Selective Vulnerability to Combined Ionizing Radiation and PARP Inhibitor Therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25: 5584–5594. doi: 10.1158/1078-0432.CCR-18-4222 31196855

16. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363: 1532–1543. doi: 10.1056/NEJMoa1008433 20942669

17. Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, et al. Arid1a Has Context-Dependent Oncogenic and Tumor Suppressor Functions in Liver Cancer. Cancer Cell. 2018;33: 151–152. doi: 10.1016/j.ccell.2017.12.011 29316428

18. Trizzino M, Barbieri E, Petracovici A, Wu S, Welsh SA, Owens TA, et al. The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II. Cell Rep. 2018;23: 3933–3945. doi: 10.1016/j.celrep.2018.05.097 29949775

19. Williamson CT, Miller R, Pemberton HN, Jones SE, Campbell J, Konde A, et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun. 2016;7: 13837. doi: 10.1038/ncomms13837 27958275

20. Roy S, Luzwick JW, Schlacher K. SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks. J Cell Biol. 2018;217: 1521–1536. doi: 10.1083/jcb.201709121 29475976

21. Roy S, Tomaszowski K-H, Luzwick JW, Park S, Li J, Murphy M, et al. p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLθ pathways. eLife. 2018;7. doi: 10.7554/eLife.31723 29334356

22. Chang EY-C, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, et al. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun. 2019;10: 4265. doi: 10.1038/s41467-019-12271-w 31537797

23. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell. 2017;170: 774–786.e19. doi: 10.1016/j.cell.2017.07.043 28802045

24. Sanchez A, de Vivo A, Tonzi P, Kim J, Huang TT, Kee Y. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. PLoS Genet. 2020;16: e1008524. doi: 10.1371/journal.pgen.1008524 32142505

25. Vanoosthuyse V. Strengths and Weaknesses of the Current Strategies to Map and Characterize R-Loops. Non-Coding RNA. 2018;4. doi: 10.3390/ncrna4020009 29657305

26. Chang EY-C, Novoa CA, Aristizabal MJ, Coulombe Y, Segovia R, Chaturvedi R, et al. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J Cell Biol. 2017;216: 3991–4005. doi: 10.1083/jcb.201703168 29042409

27. García-Rubio ML, Pérez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E, Rosado IV, et al. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet. 2015;11: e1005674. doi: 10.1371/journal.pgen.1005674 26584049

28. Liang Z, Liang F, Teng Y, Chen X, Liu J, Longerich S, et al. Binding of FANCI-FANCD2 Complex to RNA and R-Loops Stimulates Robust FANCD2 Monoubiquitination. Cell Rep. 2019;26: 564–572.e5. doi: 10.1016/j.celrep.2018.12.084 30650351

29. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559: 279–284. doi: 10.1038/s41586-018-0261-5 29950726

30. Cohen SM, Chastain PD, Rosson GB, Groh BS, Weissman BE, Kaufman DG, et al. BRG1 co-localizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res. 2010;38: 6906–6919. doi: 10.1093/nar/gkq559 20571081

31. McBride MJ, Pulice JL, Beird HC, Ingram DR, D’Avino AR, Shern JF, et al. The SS18-SSX Fusion Oncoprotein Hijacks BAF Complex Targeting and Function to Drive Synovial Sarcoma. Cancer Cell. 2018;33: 1128–1141.e7. doi: 10.1016/j.ccell.2018.05.002 29861296

32. Malovannaya A, Li Y, Bulynko Y, Jung SY, Wang Y, Lanz RB, et al. Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proc Natl Acad Sci U S A. 2010;107: 2431–2436. doi: 10.1073/pnas.0912599106 20133760

33. Liu K, Luo Y, Lin F-T, Lin W-C. TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev. 2004;18: 673–686. doi: 10.1101/gad.1180204 15075294

34. Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, et al. ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors. Cancer Discov. 2015;5: 752–767. doi: 10.1158/2159-8290.CD-14-0849 26069190

35. Hu H-M, Zhao X, Kaushik S, Robillard L, Barthelet A, Lin KK, et al. A Quantitative Chemotherapy Genetic Interaction Map Reveals Factors Associated with PARP Inhibitor Resistance. Cell Rep. 2018;23: 918–929. doi: 10.1016/j.celrep.2018.03.093 29669295

36. Miller EL, Hargreaves DC, Kadoch C, Chang C-Y, Calarco JP, Hodges C, et al. TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol. 2017;24: 344–352. doi: 10.1038/nsmb.3384 28250416

37. Ohle C, Tesorero R, Schermann G, Dobrev N, Sinning I, Fischer T. Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair. Cell. 2016;167: 1001–1013.e7. doi: 10.1016/j.cell.2016.10.001 27881299

38. Li L, Germain DR, Poon H-Y, Hildebrandt MR, Monckton EA, McDonald D, et al. DEAD Box 1 Facilitates Removal of RNA and Homologous Recombination at DNA Double-Strand Breaks. Mol Cell Biol. 2016;36: 2794–2810. doi: 10.1128/MCB.00415-16 27550810

39. Lemaçon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8: 860. doi: 10.1038/s41467-017-01180-5 29038425

40. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22: 106–116. doi: 10.1016/j.ccr.2012.05.015 22789542

41. Castellano-Pozo M, Santos-Pereira JM, Rondón AG, Barroso S, Andújar E, Pérez-Alegre M, et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell. 2013;52: 583–590. doi: 10.1016/j.molcel.2013.10.006 24211264

42. Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat Genet. 2016;48: 1385–1395. doi: 10.1038/ng.3672 27668659

43. Chong SY, Cutler S, Lin J-J, Tsai C-H, Tsai H-K, Biggins S, et al. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun. 2020;11: 809. doi: 10.1038/s41467-020-14595-4 32041946

44. Local A, Huang H, Albuquerque CP, Singh N, Lee AY, Wang W, et al. Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet. 2018;50: 73–82. doi: 10.1038/s41588-017-0015-6 29255264

45. Zhong Y, Nellimoottil T, Peace JM, Knott SRV, Villwock SK, Yee JM, et al. The level of origin firing inversely affects the rate of replication fork progression. J Cell Biol. 2013;201: 373–383. doi: 10.1083/jcb.201208060 23629964

46. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9: 671–675. doi: 10.1038/nmeth.2089 22930834

47. Wu S, Fatkhutdinov N, Rosin L, Luppino JM, Iwasaki O, Tanizawa H, et al. ARID1A spatially partitions interphase chromosomes. Sci Adv. 2019;5: eaaw5294. doi: 10.1126/sciadv.aaw5294 31131328

Článek vyšel v časopise

PLOS Genetics

2021 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se