Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy


Autoři: Shigefumi Morioka aff001;  Hirofumi Sakaguchi aff002;  Hiroaki Mohri aff001;  Mariko Taniguchi-Ikeda aff003;  Motoi Kanagawa aff003;  Toshiaki Suzuki aff001;  Yuko Miyagoe-Suzuki aff005;  Tatsushi Toda aff003;  Naoaki Saito aff001;  Takehiko Ueyama aff001
Působiště autorů: Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan aff001;  Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan aff002;  Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan aff003;  Department of Clinical Genetics, Fujita Health University Hospital, Toyoake, Japan aff004;  Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan aff005;  Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan aff006
Vyšlo v časopise: Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy. PLoS Genet 16(5): e1008826. doi:10.1371/journal.pgen.1008826
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008826

Souhrn

Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan–laminin complex and demarcated by “the glial dome.” In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG.

Klíčová slova:

Auditory nerves – Axons – Cochlea – Deafness – Immunostaining – Mouse models – Nerves – Schwann cells


Zdroje

1. Alford RL, Arnos KS, Fox M, Lin JW, Palmer CG, Pandya A, et al. American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014;16(4):347–55. doi: 10.1038/gim.2014.2 24651602.

2. Cabanillas R, Dineiro M, Cifuentes GA, Castillo D, Pruneda PC, Alvarez R, et al. Comprehensive genomic diagnosis of non-syndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics. 2018;11(1):58. doi: 10.1186/s12920-018-0375-5 29986705; PubMed Central PMCID: PMC6038346.

3. Koffler T, Ushakov K, Avraham KB. Genetics of Hearing Loss: Syndromic. Otolaryngol Clin North Am. 2015;48(6):1041–61. doi: 10.1016/j.otc.2015.07.007 26443487; PubMed Central PMCID: PMC4641804.

4. Bowl MR, Simon MM, Ingham NJ, Greenaway S, Santos L, Cater H, et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat Commun. 2017;8(1):886. doi: 10.1038/s41467-017-00595-4 29026089; PubMed Central PMCID: PMC5638796.

5. Jecmenica J, Bajec-Opancina A, Jecmenica D. Genetic hearing impairment. Childs Nerv Syst. 2015;31(4):515–9. Epub 2015/02/18. doi: 10.1007/s00381-015-2628-3 25686889.

6. Flanigan KM. The muscular dystrophies. Semin Neurol. 2012;32(3):255–63. doi: 10.1055/s-0032-1329199 23117950.

7. Kinter J, Sinnreich M. Molecular targets to treat muscular dystrophies. Swiss Med Wkly. 2014;144:w13916. Epub 2014/02/21. doi: 10.4414/smw.2014.13916 24554202.

8. Kanagawa M, Toda T. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. J Neuromuscul Dis. 2017;4(4):259–67. doi: 10.3233/JND-170255 29081423; PubMed Central PMCID: PMC5701763.

9. Sheikh MO, Halmo SM, Wells L. Recent advancements in understanding mammalian O-mannosylation. Glycobiology. 2017;27(9):806–19. doi: 10.1093/glycob/cwx062 28810660; PubMed Central PMCID: PMC6082599.

10. Ishigaki K, Ihara C, Nakamura H, Mori-Yoshimura M, Maruo K, Taniguchi-Ikeda M, et al. National registry of patients with Fukuyama congenital muscular dystrophy in Japan. Neuromuscul Disord. 2018;28(10):885–93. Epub 2018/09/18. doi: 10.1016/j.nmd.2018.08.001 30220444.

11. Godfrey C, Foley AR, Clement E, Muntoni F. Dystroglycanopathies: coming into focus. Curr Opin Genet Dev. 2011;21(3):278–85. doi: 10.1016/j.gde.2011.02.001 21397493.

12. Manya H, Endo T. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Biochim Biophys Acta Gen Subj. 2017;1861(10):2462–72. doi: 10.1016/j.bbagen.2017.06.024 28711406.

13. Tawil R, Kissel JT, Heatwole C, Pandya S, Gronseth G, Benatar M, et al. Evidence-based guideline summary: Evaluation, diagnosis, and management of facioscapulohumeral muscular dystrophy: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology. 2015;85(4):357–64. doi: 10.1212/WNL.0000000000001783 26215877; PubMed Central PMCID: PMC4520817.

14. Lutz KL, Holte L, Kliethermes SA, Stephan C, Mathews KD. Clinical and genetic features of hearing loss in facioscapulohumeral muscular dystrophy. Neurology. 2013;81(16):1374–7. doi: 10.1212/WNL.0b013e3182a84140 24042093; PubMed Central PMCID: PMC3806909.

15. Dandapat A, Bosnakovski D, Hartweck LM, Arpke RW, Baltgalvis KA, Vang D, et al. Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene. Cell Rep. 2014;8(5):1484–96. doi: 10.1016/j.celrep.2014.07.056 25176645; PubMed Central PMCID: PMC4188423.

16. Dandapat A, Perrin BJ, Cabelka C, Razzoli M, Ervasti JM, Bartolomucci A, et al. High Frequency Hearing Loss and Hyperactivity in DUX4 Transgenic Mice. PLoS One. 2016;11(3):e0151467. doi: 10.1371/journal.pone.0151467 26978271; PubMed Central PMCID: PMC4792399.

17. Wright RB, Glantz RH, Butcher J. Hearing loss in myotonic dystrophy. Ann Neurol. 1988;23(2):202–3. Epub 1988/02/01. doi: 10.1002/ana.410230217 3377441.

18. Pisani V, Tirabasso A, Mazzone S, Terracciano C, Botta A, Novelli G, et al. Early subclinical cochlear dysfunction in myotonic dystrophy type 1. Eur J Neurol. 2011;18(12):1412–6. doi: 10.1111/j.1468-1331.2011.03470.x 21777352.

19. Balatsouras DG, Felekis D, Panas M, Xenellis J, Koutsis G, Kladi A, et al. Inner ear dysfunction in myotonic dystrophy type 1. Acta Neurol Scand. 2013;127(5):337–43. doi: 10.1111/ane.12020 23121018.

20. Mathews KD, Rapisarda D, Bailey HL, Murray JC, Schelper RL, Smith R. Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy. J Neuropathol Exp Neurol. 1995;54(4):601–6. doi: 10.1093/whq/54.4.601 7602333.

21. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet. 2003;12(21):2853–61. doi: 10.1093/hmg/ddg307 12966029.

22. Janssen T. A review of the effectiveness of otoacoustic emissions for evaluating hearing status after newborn screening. Otol Neurotol. 2013;34(6):1058–63. doi: 10.1097/MAO.0b013e318282964f 23628790.

23. Narui Y, Minekawa A, Iizuka T, Furukawa M, Kusunoki T, Koike T, et al. Development of distortion product otoacoustic emissions in C57BL/6J mice. Int J Audiol. 2009;48(8):576–81. doi: 10.1080/14992020902858959 19842812.

24. Ueyama T, Sakaguchi H, Nakamura T, Goto A, Morioka S, Shimizu A, et al. Maintenance of stereocilia and apical junctional complexes by Cdc42 in cochlear hair cells. J Cell Sci. 2014;127(Pt 9):2040–52. Epub 2014/03/13. doi: 10.1242/jcs.143602 24610943.

25. Heaney DL, Schulte BA, Niedzielski AS. Dystroglycan expression in the developing and senescent gerbil cochlea. Hear Res. 2002;174(1–2):9–18. Epub 2002/11/16. doi: 10.1016/s0378-5955(02)00611-1 12433392.

26. Heaney DL, Schulte BA. Dystroglycan expression in the mouse cochlea. Hear Res. 2003;177(1–2):12–20. doi: 10.1016/s0378-5955(02)00769-4 12618313.

27. Wang J, Zhang B, Jiang H, Zhang L, Liu D, Xiao X, et al. Myelination of the postnatal mouse cochlear nerve at the peripheral-central nervous system transitional zone. Front Pediatr. 2013;1:43. doi: 10.3389/fped.2013.00043 24400289; PubMed Central PMCID: PMC3865698.

28. Ross MD, Burkel W. Electron microscopic observations of the nucleus, glial dome, and meninges of the rat acoustic nerve. Am J Anat. 1971;130(1):73–91. doi: 10.1002/aja.1001300106 5540217.

29. Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–67. doi: 10.1016/S1474-4422(18)30024-3 29395989; PubMed Central PMCID: PMC5869704.

30. Yamada H, Chiba A, Endo T, Kobata A, Anderson LV, Hori H, et al. Characterization of dystroglycan-laminin interaction in peripheral nerve. J Neurochem. 1996;66(4):1518–24. doi: 10.1046/j.1471-4159.1996.66041518.x 8627307.

31. Matsumura K, Yamada H, Saito F, Sunada Y, Shimizu T. Peripheral nerve involvement in merosin-deficient congenital muscular dystrophy and dy mouse. Neuromuscul Disord. 1997;7(1):7–12. doi: 10.1016/s0960-8966(96)00402-6 9132144.

32. Sherman DL, Brophy PJ. Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci. 2005;6(9):683–90. doi: 10.1038/nrn1743 16136172.

33. Peyrard M, Seroussi E, Sandberg-Nordqvist AC, Xie YG, Han FY, Fransson I, et al. The human LARGE gene from 22q12.3-q13.1 is a new, distinct member of the glycosyltransferase gene family. Proc Natl Acad Sci U S A. 1999;96(2):598–603. doi: 10.1073/pnas.96.2.598 9892679; PubMed Central PMCID: PMC15182.

34. Fujimura K, Sawaki H, Sakai T, Hiruma T, Nakanishi N, Sato T, et al. LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE. Biochem Biophys Res Commun. 2005;329(3):1162–71. doi: 10.1016/j.bbrc.2005.02.082 15752776.

35. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001;1(5):717–24. doi: 10.1016/s1534-5807(01)00070-3 11709191.

36. Yamamoto T, Kato Y, Karita M, Kawaguchi M, Shibata N, Kobayashi M. Expression of genes related to muscular dystrophy with lissencephaly. Pediatr Neurol. 2004;31(3):183–90. doi: 10.1016/j.pediatrneurol.2004.03.020 15351017.

37. Bunge RP, Bunge MB, Bates M. Movements of the Schwann cell nucleus implicate progression of the inner (axon-related) Schwann cell process during myelination. J Cell Biol. 1989;109(1):273–84. doi: 10.1083/jcb.109.1.273 2745552; PubMed Central PMCID: PMC2115485.

38. Masaki T, Matsumura K, Saito F, Yamada H, Higuchi S, Kamakura K, et al. Association of dystroglycan and laminin-2 coexpression with myelinogenesis in peripheral nerves. Med Electron Microsc. 2003;36(4):221–39. doi: 10.1007/s00795-003-0231-2 16228655.

39. Saito F, Moore SA, Barresi R, Henry MD, Messing A, Ross-Barta SE, et al. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron. 2003;38(5):747–58. doi: 10.1016/s0896-6273(03)00301-5 12797959.

40. Saito F, Masaki T, Saito Y, Nakamura A, Takeda S, Shimizu T, et al. Defective peripheral nerve myelination and neuromuscular junction formation in fukutin-deficient chimeric mice. J Neurochem. 2007;101(6):1712–22. doi: 10.1111/j.1471-4159.2007.04462.x 17326765.

41. Chan SH, Foley AR, Phadke R, Mathew AA, Pitt M, Sewry C, et al. Limb girdle muscular dystrophy due to LAMA2 mutations: diagnostic difficulties due to associated peripheral neuropathy. Neuromuscul Disord. 2014;24(8):677–83. doi: 10.1016/j.nmd.2014.05.008 24957499.

42. Jang DH, Sung IY, Ko TS. Peripheral nerve involvement in fukuyama congenital muscular dystrophy: a case report. J Child Neurol. 2013;28(1):132–7. doi: 10.1177/0883073812437425 22378666.

43. Berti C, Bartesaghi L, Ghidinelli M, Zambroni D, Figlia G, Chen ZL, et al. Non-redundant function of dystroglycan and beta1 integrins in radial sorting of axons. Development. 2011;138(18):4025–37. doi: 10.1242/dev.065490 21862561; PubMed Central PMCID: PMC3160097.

44. Jager K, Kossl M. Corticofugal Modulation of DPOAEs in Gerbils. Hear Res. 2016;332:61–72. doi: 10.1016/j.heares.2015.11.008 26619750.

45. Danesh AA, Kaf WA. DPOAEs and contralateral acoustic stimulation and their link to sound hypersensitivity in children with autism. Int J Audiol. 2012;51(4):345–52. doi: 10.3109/14992027.2011.626202 22299666.

46. Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol. 2018;9:197. doi: 10.3389/fneur.2018.00197 29632514; PubMed Central PMCID: PMC5879449.

47. Guinan JJ Jr. Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res. 2018;362:38–47. doi: 10.1016/j.heares.2017.12.012 29291948; PubMed Central PMCID: PMC5911200.

48. Ishiyama A, Mowry SE, Lopez IA, Ishiyama G. Immunohistochemical distribution of basement membrane proteins in the human inner ear from older subjects. Hear Res. 2009;254(1–2):1–14. doi: 10.1016/j.heares.2009.03.014 19348877; PubMed Central PMCID: PMC2758085.

49. Starr A, Michalewski HJ, Zeng FG, Fujikawa-Brooks S, Linthicum F, Kim CS, et al. Pathology and physiology of auditory neuropathy with a novel mutation in the MPZ gene (Tyr145->Ser). Brain. 2003;126(Pt 7):1604–19. doi: 10.1093/brain/awg156 12805115.

50. Nadol JB Jr., Hedley-Whyte ET, Amr SS, JT OAM, Kamakura T. Histopathology of the Inner Ear in Charcot-Marie-Tooth Syndrome Caused by a Missense Variant (p.Thr65Ala) in the MPZ Gene. Audiol Neurootol. 2018;23(6):326–34. doi: 10.1159/000495176 30677751; PubMed Central PMCID: PMC6421093.

51. Kanagawa M, Nishimoto A, Chiyonobu T, Takeda S, Miyagoe-Suzuki Y, Wang F, et al. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum Mol Genet. 2009;18(4):621–31. doi: 10.1093/hmg/ddn387 19017726; PubMed Central PMCID: PMC2638827.

52. Ohtsuka Y, Kanagawa M, Yu CC, Ito C, Chiyo T, Kobayashi K, et al. Fukutin is prerequisite to ameliorate muscular dystrophic phenotype by myofiber-selective LARGE expression. Sci Rep. 2015;5:8316. doi: 10.1038/srep08316 25661440; PubMed Central PMCID: PMC4321163.

53. Miyagoe-Suzuki Y, Masubuchi N, Miyamoto K, Wada MR, Yuasa S, Saito F, et al. Reduced proliferative activity of primary POMGnT1-null myoblasts in vitro. Mech Dev. 2009;126(3–4):107–16. doi: 10.1016/j.mod.2008.12.001 19114101.

54. Liu J, Ball SL, Yang Y, Mei P, Zhang L, Shi H, et al. A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev. 2006;123(3):228–40. doi: 10.1016/j.mod.2005.12.003 16458488.

55. Taniguchi K, Kobayashi K, Saito K, Yamanouchi H, Ohnuma A, Hayashi YK, et al. Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum Mol Genet. 2003;12(5):527–34. doi: 10.1093/hmg/ddg043 12588800.

56. Hehr U, Uyanik G, Gross C, Walter MC, Bohring A, Cohen M, et al. Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics. 2007;8(4):279–88. doi: 10.1007/s10048-007-0096-y 17906881.

57. Yis U, Uyanik G, Rosendahl DM, Carman KB, Bayram E, Heise M, et al. Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. Pediatr Neurol. 2014;50(5):491–7. doi: 10.1016/j.pediatrneurol.2014.01.008 24731844.

58. von Renesse A, Petkova MV, Lutzkendorf S, Heinemeyer J, Gill E, Hubner C, et al. POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet. 2014;51(4):275–82. doi: 10.1136/jmedgenet-2013-102236 24556084.

59. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science. 2013;340(6131):479–83. doi: 10.1126/science.1233675 23519211; PubMed Central PMCID: PMC3919138.

60. Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C, Saredi S, et al. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum Mol Genet. 2014;23(21):5781–92. doi: 10.1093/hmg/ddu296 24925318; PubMed Central PMCID: PMC4189906.

61. Ardicli D, Gocmen R, Talim B, Sprute R, Haliloglu G, Cirak S, et al. Congenital mirror movements in a patient with alpha-dystroglycanopathy due to a novel POMK mutation. Neuromuscul Disord. 2017;27(3):239–42. doi: 10.1016/j.nmd.2016.12.008 28109637.

62. Strang-Karlsson S, Johnson K, Topf A, Xu L, Lek M, MacArthur DG, et al. A novel compound heterozygous mutation in the POMK gene causing limb-girdle muscular dystrophy-dystroglycanopathy in a sib pair. Neuromuscul Disord. 2018;28(7):614–8. doi: 10.1016/j.nmd.2018.04.012 29910097.

63. Stevens E, Carss KJ, Cirak S, Foley AR, Torelli S, Willer T, et al. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of alpha-dystroglycan. Am J Hum Genet. 2013;92(3):354–65. doi: 10.1016/j.ajhg.2013.01.016 23453667; PubMed Central PMCID: PMC3591840.

64. Maroofian R, Riemersma M, Jae LT, Zhianabed N, Willemsen MH, Wissink-Lindhout WM, et al. B3GALNT2 mutations associated with non-syndromic autosomal recessive intellectual disability reveal a lack of genotype-phenotype associations in the muscular dystrophy-dystroglycanopathies. Genome Med. 2017;9(1):118. doi: 10.1186/s13073-017-0505-2 29273094; PubMed Central PMCID: PMC5740572.

65. Sframeli M, Sarkozy A, Bertoli M, Astrea G, Hudson J, Scoto M, et al. Congenital muscular dystrophies in the UK population: Clinical and molecular spectrum of a large cohort diagnosed over a 12-year period. Neuromuscul Disord. 2017;27(9):793–803. doi: 10.1016/j.nmd.2017.06.008 28688748.

66. Al Dhaibani MA, El-Hattab AW, Ismayl O, Suleiman J. B3GALNT2-Related Dystroglycanopathy: Expansion of the Phenotype with Novel Mutation Associated with Muscle-Eye-Brain Disease, Walker-Warburg Syndrome, Epileptic Encephalopathy-West Syndrome, and Sensorineural Hearing Loss. Neuropediatrics. 2018;49(4):289–95. doi: 10.1055/s-0038-1651519 29791932.

67. van Reeuwijk J, Grewal PK, Salih MA, Beltran-Valero de Bernabe D, McLaughlan JM, Michielse CB, et al. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum Genet. 2007;121(6):685–90. doi: 10.1007/s00439-007-0362-y 17436019; PubMed Central PMCID: PMC1914248.

68. Mercuri E, Messina S, Bruno C, Mora M, Pegoraro E, Comi GP, et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology. 2009;72(21):1802–9. doi: 10.1212/01.wnl.0000346518.68110.60 19299310.

69. Clarke NF, Maugenre S, Vandebrouck A, Urtizberea JA, Willer T, Peat RA, et al. Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. Eur J Hum Genet. 2011;19(4):452–7. doi: 10.1038/ejhg.2010.212 21248746; PubMed Central PMCID: PMC3060325.

70. Milloy V, Fournier P, Benoit D, Norena A, Koravand A. Auditory Brainstem Responses in Tinnitus: A Review of Who, How, and What? Front Aging Neurosci. 2017;9:237. doi: 10.3389/fnagi.2017.00237 28785218; PubMed Central PMCID: PMC5519563.

71. Kohrman D C., Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harbor Perspectives in Medicine. 2020;10(1). doi: 10.1101/cshperspect.a035493 30617057

72. Liberman MC. Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Res. 2017;6:927. doi: 10.12688/f1000research.11310.1 28690836; PubMed Central PMCID: PMC5482333.

73. Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun. 2017;8:14487. doi: 10.1038/ncomms14487 28211470; PubMed Central PMCID: PMC5321746.

74. Choi JE, Seok JM, Ahn J, Ji YS, Lee KM, Hong SH, et al. Hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1A. Sci Rep. 2018;8(1):10335. doi: 10.1038/s41598-018-28501-y 29985472; PubMed Central PMCID: PMC6037750.

75. Rance G, Ryan MM, Bayliss K, Gill K, O'Sullivan C, Whitechurch M. Auditory function in children with Charcot-Marie-Tooth disease. Brain. 2012;135(Pt 5):1412–22. doi: 10.1093/brain/aws085 22522939.

76. Kovach MJ, Campbell KC, Herman K, Waggoner B, Gelber D, Hughes LF, et al. Anticipation in a unique family with Charcot-Marie-Tooth syndrome and deafness: delineation of the clinical features and review of the literature. Am J Med Genet. 2002;108(4):295–303. doi: 10.1002/ajmg.10223 11920834.

77. Giuliani N, Holte L, Shy M, Grider T. The audiologic profile of patients with Charcot-Marie Tooth neuropathy can be characterised by both cochlear and neural deficits. Int J Audiol. 2019;58(12):902–12. doi: 10.1080/14992027.2019.1633022 31318300.

78. Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS One. 2016;11(9):e0162726. doi: 10.1371/journal.pone.0162726 27618300; PubMed Central PMCID: PMC5019483.

79. Kurahashi H, Taniguchi M, Meno C, Taniguchi Y, Takeda S, Horie M, et al. Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol Dis. 2005;19(1–2):208–17. doi: 10.1016/j.nbd.2004.12.018 15837576.

80. Yoshioka M, Saiwai S, Kuroki S, Nigami H. MR imaging of the brain in Fukuyama-type congenital muscular dystrophy. AJNR Am J Neuroradiol. 1991;12(1):63–5. 1899518.

81. Kato T, Funahashi M, Matsui A, Takashima S, Suzuki Y. MRI of disseminated developmental dysmyelination in Fukuyama type of CMD. Pediatr Neurol. 2000;23(5):385–8. doi: 10.1016/s0887-8994(00)00210-1 11118792.

82. Sener RN. Walker-Warburg syndrome: diffusion MR imaging. J Neuroradiol. 2005;32(3):213–5. doi: 10.1016/s0150-9861(05)83140-2 16134304.

83. Aida N, Tamagawa K, Takada K, Yagishita A, Kobayashi N, Chikumaru K, et al. Brain MR in Fukuyama congenital muscular dystrophy. AJNR Am J Neuroradiol. 1996;17(4):605–13. 8730178.

84. Kato Z, Morimoto M, Orii KE, Kato T, Kondo N. Developmental changes of radiological findings in Fukuyama-type congenital muscular dystrophy. Pediatr Radiol. 2010;40 Suppl 1:S127–9. doi: 10.1007/s00247-010-1724-5 20571791.

85. Kato T, Nishina M, Matsushita K, Hori E, Akaboshi S, Takashima S. Increased cerebral choline-compounds in Duchenne muscular dystrophy. Neuroreport. 1997;8(6):1435–7. doi: 10.1097/00001756-199704140-00022 9172149.

86. Ricotti V, Mandy WP, Scoto M, Pane M, Deconinck N, Messina S, et al. Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev Med Child Neurol. 2016;58(1):77–84. doi: 10.1111/dmcn.12922 26365034.

87. Chaussenot R, Edeline JM, Le Bec B, El Massioui N, Laroche S, Vaillend C. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes. Neurobiol Learn Mem. 2015;124:111–22. doi: 10.1016/j.nlm.2015.07.006 26190833.

88. Masaki T, Matsumura K. Biological role of dystroglycan in Schwann cell function and its implications in peripheral nervous system diseases. J Biomed Biotechnol. 2010;2010:740403. doi: 10.1155/2010/740403 20625412; PubMed Central PMCID: PMC2896880.

89. Byers TJ, Lidov HG, Kunkel LM. An alternative dystrophin transcript specific to peripheral nerve. Nat Genet. 1993;4(1):77–81. doi: 10.1038/ng0593-77 8513330.

90. Saito F, Masaki T, Kamakura K, Anderson LV, Fujita S, Fukuta-Ohi H, et al. Characterization of the transmembrane molecular architecture of the dystroglycan complex in schwann cells. J Biol Chem. 1999;274(12):8240–6. doi: 10.1074/jbc.274.12.8240 10075729.

91. Matsuo M, Awano H, Matsumoto M, Nagai M, Kawaguchi T, Zhang Z, et al. Dystrophin Dp116: A yet to Be Investigated Product of the Duchenne Muscular Dystrophy Gene. Genes (Basel). 2017;8(10). doi: 10.3390/genes8100251 28974057; PubMed Central PMCID: PMC5664101.

92. Yamada H, Denzer AJ, Hori H, Tanaka T, Anderson LV, Fujita S, et al. Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. J Biol Chem. 1996;271(38):23418–23. doi: 10.1074/jbc.271.38.23418 8798547.

93. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998;394(6691):388–92. doi: 10.1038/28653 9690476.

94. Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, et al. Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet. 1999;8(12):2303–9. doi: 10.1093/hmg/8.12.2303 10545611.

95. Lim BC, Ki CS, Kim JW, Cho A, Kim MJ, Hwang H, et al. Fukutin mutations in congenital muscular dystrophies with defective glycosylation of dystroglycan in Korea. Neuromuscul Disord. 2010;20(8):524–30. doi: 10.1016/j.nmd.2010.06.005 20620061.

96. Ueyama T, Ninoyu Y, Nishio SY, Miyoshi T, Torii H, Nishimura K, et al. Constitutive activation of DIA1 (DIAPH1) via C-terminal truncation causes human sensorineural hearing loss. EMBO Mol Med. 2016;8(11):1310–24. doi: 10.15252/emmm.201606609 27707755.

97. Morioka S, Sakaguchi H, Yamaguchi T, Ninoyu Y, Mohri H, Nakamura T, et al. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. J Neurochem. 2018;146(4):459–73. doi: 10.1111/jnc.14451 29675997.

98. Ueyama T, Tatsuno T, Kawasaki T, Tsujibe S, Shirai Y, Sumimoto H, et al. A regulated adaptor function of p40phox: distinct p67phox membrane targeting by p40phox and by p47phox. Mol Biol Cell. 2007;18(2):441–54. doi: 10.1091/mbc.e06-08-0731 17122360; PubMed Central PMCID: PMC1783789.

99. Cone B, Norrix LW. Measuring the Advantage of Kalman-Weighted Averaging for Auditory Brainstem Response Hearing Evaluation in Infants. Am J Audiol. 2015;24(2):153–68. doi: 10.1044/2015_AJA-14-0021 25654653.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se