-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaThe genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication
Autoři: Qiuyue Chen aff001; Luis Fernando Samayoa aff002; Chin Jian Yang aff001; Peter J. Bradbury aff003; Bode A. Olukolu aff004; Michael A. Neumeyer aff001; Maria Cinta Romay aff005; Qi Sun aff005; Anne Lorant aff006; Edward S. Buckler aff003; Jeffrey Ross-Ibarra aff006; James B. Holland aff002; John F. Doebley aff001
Působiště autorů: Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America aff001; Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America aff002; US Department of Agriculture–Agricultural Research Service, Cornell University, Ithaca, New York, United States of America aff003; Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America aff004; Genomic Diversity Facility, Cornell University, Ithaca, New York, United States of America aff005; Department of Evolution and Ecology, University of California, Davis, California, United States of America aff006; US Department of Agriculture–Agricultural Research Service Plant Science Research Unit, North Carolina State University, Raleigh, North Carolina, United States of America aff007
Vyšlo v časopise: The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008791
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008791Souhrn
The genetics of domestication has been extensively studied ever since the rediscovery of Mendel’s law of inheritance and much has been learned about the genetic control of trait differences between crops and their ancestors. Here, we ask how domestication has altered genetic architecture by comparing the genetic architecture of 18 domestication traits in maize and its ancestor teosinte using matched populations. We observed a strongly reduced number of QTL for domestication traits in maize relative to teosinte, which is consistent with the previously reported depletion of additive variance by selection during domestication. We also observed more dominance in maize than teosinte, likely a consequence of selective removal of additive variants. We observed that large effect QTL have low minor allele frequency (MAF) in both maize and teosinte. Regions of the genome that are strongly differentiated between teosinte and maize (high FST) explain less quantitative variation in maize than teosinte, suggesting that, in these regions, allelic variants were brought to (or near) fixation during domestication. We also observed that genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. Finally, we observed that about 75% of the additive variance in both teosinte and maize is “missing” in the sense that it cannot be ascribed to detectable QTL and only 25% of variance maps to specific QTL. This latter result suggests that morphological evolution during domestication is largely attributable to very large numbers of QTL of very small effect.
Klíčová slova:
Crop genetics – Domestic animals – Heredity – Maize – Natural selection – Plant genomics – Population genetics – Quantitative trait loci
Zdroje
1. Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. H. Milford; Oxford University Press; 1859.
2. Burger JC, Chapman MA, Burke JM. Molecular insights into the evolution of crop plants. Am J Bot. 2008; 95 : 113–122. doi: 10.3732/ajb.95.2.113 21632337
3. Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006; 127 : 1309–1321. doi: 10.1016/j.cell.2006.12.006 17190597
4. Gross BL, Olsen KM. Genetic perspectives on crop domestication. Trends Plant Sci. 2010; 15 : 529–537. doi: 10.1016/j.tplants.2010.05.008 20541451
5. Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013; 14 : 840–852. doi: 10.1038/nrg3605 24240513
6. Olsen KM, Wendel JF. A bountiful harvest: genomic insights into crop domestication phenotypes. Ann Rev Plant Biol. 2013; 64 : 47–70.
7. Swinnen G, Goossens A, Pauwels L. Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci. 2016; 21 : 506–515. doi: 10.1016/j.tplants.2016.01.014 26876195
8. Yang CJ, Samayoa LF, Bradbury PJ, Olukolu BA, Xue W, York AM, et al. The genetic architecture of teosinte catalyzed and constrained maize domestication. Proc Natl Acad Sci USA. 2019; 116 : 5643–5652. doi: 10.1073/pnas.1820997116 30842282
9. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA. 2002; 99 : 6080–6084. doi: 10.1073/pnas.052125199 11983901
10. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA. 2009; 106 : 5019–5024. doi: 10.1073/pnas.0812525106 19307570
11. Walsh B, Lynch M. Evolution and Selection of Quantitative Traits. Oxford University Press; 2018.
12. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017; 546 : 524. doi: 10.1038/nature22971 28605751
13. Ou S, Liu J, Chougule KM, Fungtammasan A, Seetharam A, Stein J, et al. Effect of sequence depth and length in long-read assembly of the maize inbred NC358. BioRxiv [Preprint]. 2019 bioRxiv 858365 [posted 2019 Nov 29; revised 2019 Dec 3; cited 2020 Feb 10]: [24 p.]. Available from: https://www.biorxiv.org/content/10.1101/858365v2 https://doi.org/10.1101/858365
14. Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, Barad O, et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet. 2018; 50 : 1282. doi: 10.1038/s41588-018-0158-0 30061736
15. Sun S, Zhou Y, Chen J, Shi J, Zhao HM, Zhao HN, et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet. 2018; 50 : 1289. doi: 10.1038/s41588-018-0182-0 30061735
16. Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, et al. Construction of the third-generation Zea mays haplotype map. Gigascience. 2018; 7: gix134.
17. Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, DeValk CA, et al. TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics. 2019; 213 : 1065–1078. doi: 10.1534/genetics.119.302594 31481533
18. Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of nested association mapping in maize. Genetics. 2008; 178 : 539–551. doi: 10.1534/genetics.107.074245 18202393
19. Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J. Complex patterns of local adaptation in teosinte. Genome Biol Evol. 2013; 5 : 1594–1609. doi: 10.1093/gbe/evt109 23902747
20. Schneeberger R, Tsiantis M, Freeling M, Langdale JA. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development. 1998; 125 : 2857–2865. 9655808
21. Becraft PW, Freeling M. Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics. 1994; 136 : 295–311. 8138166
22. Weir BS, Cockerham CC. Estimating F‐statistics for the analysis of population structure. Evolution. 1984; 38 : 1358–1370. doi: 10.1111/j.1558-5646.1984.tb05657.x 28563791
23. Fang Z, Pyhäjärvi T, Weber AL, Dawe RK, Glaubitz JC, González JD, et al. Megabase-scale inversion polymorphism in the wild ancestor of maize. Genetics. 2012; 191 : 883–894. doi: 10.1534/genetics.112.138578 22542971
24. Buckler ES, Thornsberry JM, Kresovich S. Molecular diversity, structure and domestication of grasses. Genet Res. 2001; 77 : 213–218.
25. Hufford MB, Xu X, Van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, et al. Comparative population genomics of maize domestication and improvement. Nat Genet. 2012; 44 : 808. doi: 10.1038/ng.2309 22660546
26. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, et al. The effects of artificial selection on the maize genome. Science. 2005; 308 : 1310–1314. doi: 10.1126/science.1107891 15919994
27. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017; 57 : 1070–1082.
28. Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997; 277 : 1063–1066. doi: 10.1126/science.277.5329.1063 9262467
29. Shannon LM, Chen Q, Doebley JF. A BC2S3 maize-teosinte RIL population for QTL mapping. Maize Genet Coop News Lett. 2019; 93.
30. Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, et al. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science. 2019; 365 : 658–664. doi: 10.1126/science.aax5482 31416957
31. Desai MM, Fisher DS. Beneficial mutation–selection balance and the effect of linkage on positive selection. Genetics. 2007; 176 : 1759–1798. doi: 10.1534/genetics.106.067678 17483432
32. Perfeito L, Fernandes L, Mota C, Gordo I. Adaptive mutations in bacteria: high rate and small effects. Science. 2007; 317 : 813–815. doi: 10.1126/science.1142284 17690297
33. Kemper KE, Visscher PM, Goddard ME. Genetic architecture of body size in mammals. Genome Biol. 2012; 13 : 244. doi: 10.1186/gb-2012-13-4-244 22546202
34. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 2011; 7: e1002383. doi: 10.1371/journal.pgen.1002383 22125498
35. Troth A, Puzey JR, Kim RS, Willis JH, Kelly JK. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science. 2018; 361 : 475–478. doi: 10.1126/science.aat5760 30072534
36. Stetter MG, Thornton K, Ross-Ibarra J. Genetic architecture and selective sweeps after polygenic adaptation to distant trait optima. PLoS Genet. 2018; 14: e1007794. doi: 10.1371/journal.pgen.1007794 30452452
37. Avendaño López AN, de Jesús Sánchez González J, Ruíz Corral JA, De La Cruz Larios L, Santacruz-Ruvalcaba F, Sánchez Hernández CV, et al. Seed dormancy in Mexican teosinte. Crop Sci. 2011; 51 : 2056–2066.
38. Née G, Xiang Y, Soppe WJ. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol. 2017; 35 : 8–14. doi: 10.1016/j.pbi.2016.09.002 27710774
39. Rendón-Anaya M, Herrera-Estrella A. The advantage of parallel selection of domestication genes to accelerate crop improvement. Genome Biol. 2018; 19 : 147. doi: 10.1186/s13059-018-1537-7 30266085
40. Hernández Xolocotzi E. Maize and man in the greater southwest. Econ Bot. 1985; 39 : 416–430.
41. Logan AL, Hastorf CA, Pearsall DM. “Let’s drink together”: early ceremonial use of maize in the Titicaca Basin. Lat Am Antiq. 2012; 23 : 235–258.
42. Louette D, Charrier A, Berthaud J. In situ conservation of maize in Mexico: genetic diversity and maize seed management in a traditional community. Econ Bot. 1997; 51 : 20–38.
43. Perales H, Brush SB, Qualset CO. Dynamic management of maize landraces in Central Mexico. Econ Bot. 2003; 57 : 21.
44. Pressoir G, Berthaud J. Patterns of population structure in maize landraces from the Central Valleys of Oaxaca in Mexico. Heredity. 2004; 92 : 88. doi: 10.1038/sj.hdy.6800387 14666127
45. Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975; 7 : 256–276. doi: 10.1016/0040-5809(75)90020-9 1145509
46. Clark RM, Tavaré S, Doebley J. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus. Mol Biol Evol. 2005; 22 : 2304–2312. doi: 10.1093/molbev/msi228 16079248
47. Yang N, Xu XW, Wang RR, Peng WL, Cai L, Song JM, et al. Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun. 2017; 8 : 1–10. doi: 10.1038/s41467-016-0009-6 28232747
48. Crnokrak P, Roff DA. Dominance variance: associations with selection and fitness. Heredity. 1995; 75 : 530.
49. Merilä J, Sheldon BC. Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity. 1999; 83 : 103–109. doi: 10.1046/j.1365-2540.1999.00585.x 10469197
50. Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, et al. The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol. 2016; 210 : 256–268. doi: 10.1111/nph.13765 26593156
51. Shannon LM. The genetic architecture of maize domestication and range expansion. [PhD Dissertation] The University of Wisconsin-Madison; 2012.
52. Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, et al. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 2019; 221 : 2335–2347. doi: 10.1111/nph.15512 30288760
53. Claeys H, Vi SL, Xu X, Satoh-Nagasawa N, Eveland AL, Goldshmidt A, et al. Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity. Nat Plants. 2019; 5 : 352. doi: 10.1038/s41477-019-0394-z 30936436
54. Young AI. Solving the missing heritability problem. PLoS Genet. 2019; 15: e1008222. doi: 10.1371/journal.pgen.1008222 31233496
55. Visscher PM. Sizing up human height variation. Nat Genet. 2008; 40 : 489. doi: 10.1038/ng0508-489 18443579
56. Allen HL, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010; 467 : 832. doi: 10.1038/nature09410 20881960
57. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014; 46 : 1173. doi: 10.1038/ng.3097 25282103
58. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010; 11 : 446. doi: 10.1038/nrg2809 20479774
59. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015; 47 : 1114. doi: 10.1038/ng.3390 26323059
60. Fisher RA. The correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb. 1918; 52 : 399–433.
61. Wainschtein P, Jain DP, Yengo L, Zheng Z, Cupples LA, Shadyab AH, et al. Recovery of trait heritability from whole genome sequence data. BioRxiv [Preprint]. 2019 bioRxiv 588020 [posted 2019 Mar 25; cited 2020 Feb 10]: [23 p.]. Available from: https://www.biorxiv.org/content/10.1101/588020v1 https://doi.org/10.1101/588020
62. Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974; 78 : 737–756. 4448362
63. Hill WG, Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966; 8 : 269–294. 5980116
64. Cutter AD, Payseur BA. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet. 2013; 14 : 262. doi: 10.1038/nrg3425 23478346
65. Kliman RM, Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993; 10 : 1239–1258. doi: 10.1093/oxfordjournals.molbev.a040074 8277853
66. Xue S, Bradbury PJ, Casstevens T, Holland JB. Genetic architecture of domestication-related traits in maize. Genetics. 2016; 204 : 99–113. doi: 10.1534/genetics.116.191106 27412713
67. Clark RM, Linton E, Messing J, Doebley JF. Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci USA. 2004; 101 : 700–707. doi: 10.1073/pnas.2237049100 14701910
68. Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011; 43 : 1160. doi: 10.1038/ng.942 21946354
69. Tian F, Stevens NM, Buckler ES. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA. 2009; 106 : 9979–9986. doi: 10.1073/pnas.0901122106 19528660
70. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007; 23 : 2633–2635. doi: 10.1093/bioinformatics/btm308 17586829
71. Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES. Open chromatin reveals the functional maize genome. Proc Natl Acad Sci USA. 2016; 113: E3177–E3184. doi: 10.1073/pnas.1525244113 27185945
72. Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits. Genome Res. 2014; 24 : 1550–1557. doi: 10.1101/gr.169375.113 24963154
73. Speed D, Hemani G, Johnson MR, Balding DJ. Improved heritability estimation from genome-wide SNPs. Am J Hum Genet. 2012; 91 : 1011–1021. doi: 10.1016/j.ajhg.2012.10.010 23217325
Článek Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucomaČlánek A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneumČlánek Sex-biased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 5- Co dokáže ultrazvuková přilba pro neinvazivní stimulaci mozku
- 4× telegraficky z oblasti kardiovaskulární prevence – „jednohubky“ z klinického výzkumu 2026/3
- Infekce močových cest u dospělých – mezery v současných guidelines a doporučení pro klinickou praxi
- Jak může AI rozborem jazyka pomoci psychologům?
- S prof. Vladimírem Paličkou o racionální suplementaci kalcia a vitaminu D v každodenní praxi
-
Všechny články tohoto čísla
- A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank
- Depletion of Ric-8B leads to reduced mTORC2 activity
- A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia)
- An osteocalcin-deficient mouse strain without endocrine abnormalities
- Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass
- Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model
- Accounting for long-range correlations in genome-wide simulations of large cohorts
- Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica
- Copy number variants and fixed duplications among 198 rhesus macaques (Macaca mulatta)
- The genomic landscape of metastasis in treatment-naïve breast cancer models
- Trans-ethnic meta-analysis of genome-wide association studies identifies maternal ITPR1 as a novel locus influencing fetal growth during sensitive periods in pregnancy
- Genome-wide DNA methylation and gene expression patterns reflect genetic ancestry and environmental differences across the Indonesian archipelago
- Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei
- Separable, Ctf4-mediated recruitment of DNA Polymerase α for initiation of DNA synthesis at replication origins and lagging-strand priming during replication elongation
- Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae
- An EHBP-1-SID-3-DYN-1 axis promotes membranous tubule fission during endocytic recycling
- Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models
- Interplay between axonal Wnt5-Vang and dendritic Wnt5-Drl/Ryk signaling controls glomerular patterning in the Drosophila antennal lobe
- Additive and mostly adaptive plastic responses of gene expression to multiple stress in Tribolium castaneum
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone
- A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum
- Scalable probabilistic PCA for large-scale genetic variation data
- An Out-of-Patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages
- Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression
- ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing
- ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection
- A high-fat diet induces a microbiota-dependent increase in stem cell activity in the Drosophila intestine
- The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication
- Exome-wide association study reveals largely distinct gene sets underlying specific resistance to dengue virus types 1 and 3 in Aedes aegypti
- Correction: Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection
- Sex-biased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2
- UVR8-mediated inhibition of shade avoidance involves HFR1 stabilization in Arabidopsis
- Yeast mismatch repair components are required for stable inheritance of gene silencing
- Dynamic genetic architecture of yeast response to environmental perturbation shed light on origin of cryptic genetic variation
- Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility
- The temporal regulation of TEK contributes to pollen wall exine patterning
- Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development
- Saccharomyces cerevisiae Mus81-Mms4 prevents accelerated senescence in telomerase-deficient cells
- Interaction of YAP with the Myb-MuvB (MMB) complex defines a transcriptional program to promote the proliferation of cardiomyocytes
- Glucose transporter 10 modulates adipogenesis via an ascorbic acid-mediated pathway to protect mice against diet-induced metabolic dysregulation
- Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy
- Population genetic models of GERP scores suggest pervasive turnover of constrained sites across mammalian evolution
- The Mediator CDK8-Cyclin C complex modulates Dpp signaling in Drosophila by stimulating Mad-dependent transcription
- Correction: The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants
- Correction: Rapidly evolving protointrons in Saccharomyces genomes revealed by a hungry spliceosome
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- A new neuropeptide insect parathyroid hormone iPTH in the red flour beetle Tribolium castaneum
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání