#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The temporal regulation of TEK contributes to pollen wall exine patterning


Autoři: Shuang-Xi Xiong aff001;  Qiu-Ye Zeng aff002;  Jian-Qiao Hou aff002;  Ling-Li Hou aff002;  Jun Zhu aff002;  Min Yang aff002;  Zhong-Nan Yang aff002;  Yue Lou aff002
Působiště autorů: School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, China aff001;  Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China aff002
Vyšlo v časopise: The temporal regulation of TEK contributes to pollen wall exine patterning. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008807
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008807

Souhrn

Pollen wall consists of several complex layers which form elaborate species-specific patterns. In Arabidopsis, the transcription factor ABORTED MICROSPORE (AMS) is a master regulator of exine formation, and another transcription factor, TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK), specifies formation of the nexine layer. However, knowledge regarding the temporal regulatory roles of TEK in pollen wall development is limited. Here, TEK-GFP driven by the AMS promoter was prematurely expressed in the tapetal nuclei, leading to complete male sterility in the pAMS:TEK-GFP (pat) transgenic lines with the wild-type background. Cytological observations in the pat anthers showed impaired callose synthesis and aberrant exine patterning. CALLOSE SYNTHASE5 (CalS5) is required for callose synthesis, and expression of CalS5 in pat plants was significantly reduced. We demonstrated that TEK negatively regulates CalS5 expression after the tetrad stage in wild-type anthers and further discovered that premature TEK-GFP in pat directly represses CalS5 expression through histone modification. Our findings show that TEK flexibly mediates its different functions via different temporal regulation, revealing that the temporal regulation of TEK is essential for exine patterning. Moreover, the result that the repression of CalS5 by TEK after the tetrad stage coincides with the timing of callose wall dissolution suggests that tapetum utilizes temporal regulation of genes to stop callose wall synthesis, which, together with the activation of callase activity, achieves microspore release and pollen wall patterning.

Klíčová slova:

Anthers – Arabidopsis thaliana – Cell membranes – Flowering plants – Genetically modified plants – In situ hybridization – Pollen – Polymerase chain reaction


Zdroje

1. Ahlers F, Lambert J, Wiermann R. Acetylation and silylation of piperidine solubilized sporopollenin from pollen of Typha angustifolia L. Zeitschrift fur Natureforschung C-A Journal of Biosciences. 2003;58(11–12):807–11. doi: 10.1515/znc-2003-11-1210 14713155.

2. Blokker P, Yeloff D, Boelen P, Broekman RA, Rozema J. Development of a proxy for past surface UV-B irradiation: a thermally assisted hydrolysis and methylation py-GC/MS method for the analysis of pollen and spores. Analytical Chemistry. 2005;77(18):6026–31. doi: 10.1021/ac050696k 16159137.

3. Bubert H, Lambert J, Steuernagel S, Ahlers F, Wiermann R. Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis. Zeitschrift fur Natureforschung C-A Journal of Biosciences. 2002;57(11–12):1035–41. doi: 10.1515/znc-2002-11-1214 12562090.

4. Dominguez E, Heredia A. Water hydration in cutinized cell walls: a physico-chemical analysis. Biochimica et Biophysica Acta. 1999;1426(1):168–76. doi: 10.1016/s0304-4165(98)00152-4 9878721.

5. Li FS, Phyo P, Jacobowitz J, Hong M, Weng JK. The molecular structure of plant sporopollenin. Nature Plants. 2019;5(1):41–6. doi: 10.1038/s41477-018-0330-7 30559416.

6. Jia QS, Zhu J, Xu XF, Lou Y, Zhang ZL, Zhang ZP, et al. Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for Nexine formation. Mol Plant. 2015;8(2):251–60. doi: 10.1016/j.molp.2014.10.001 25616387.

7. Ellis M, Egelund J, Schultz CJ, Bacic A. Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiology. 2010;153(2):403–19. doi: 10.1104/pp.110.156000 20388666.

8. Brett C, Waldron K. Physiology and Biochemistry of Plant Cell Walls. Unwin Hyman 1990.

9. Blackmore S, Barnes S. Pollen wall development in angiosperms. London: Academic Press; 1990.

10. Edlund AF, Swanson R, Preuss D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell. 2004;16 Suppl(Suppl):S84.

11. Scott RJ, editor Pollen exine—the sporopollenin enigma and the physics of pattern. Seminar series; 1994.

12. Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol. 2011;62:437–60. doi: 10.1146/annurev-arplant-042809-112312 21275644.

13. Dobritsa AA, Kirkpatrick AB, Reeder SH, Li P, Owen HA. Pollen Aperture Factor INP1 Acts Late in Aperture Formation by Excluding Specific Membrane Domains from Exine Deposition. Plant Physiology. 2018;176(1):326–39. doi: 10.1104/pp.17.00720 28899962.

14. Fitzgerald MA, Knox RB. Initiation of primexine in freeze-substituted microspores of Brassica campestris. Sexual Plant Reproduction. 1995;8(2):99–104.

15. Heslop-Harrison J. Pollen wall development. The succession of events in the growth of intricately patterned pollen walls is described and discussed. Science. 1968;161(3838):230–7. doi: 10.1126/science.161.3838.230 5657325.

16. Lou Y, Zhu J, Yang ZN. Molecular Cell Biology of Pollen Walls. Berlin, Heidelberg: Springer; 2011.

17. Owen HA, Makaroff CA. Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma. 1995;185(1–2):7–21.

18. Paxson-Sowders DM, Owen HA, Makaroff CA. A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma. 1997;198(1–2):53–65.

19. Quilichini TD, Douglas CJ, Samuels AL. New views of tapetum ultrastructure and pollen exine development in Arabidopsis thaliana. Ann Bot. 2014;114(6):1189–201. doi: 10.1093/aob/mcu042 24723448.

20. Scott RJ, Spielman M, Dickinson HG. Stamen structure and function. The Plant Cell. 2004;16 Suppl:S46–60. doi: 10.1105/tpc.017012 15131249.

21. Sanders PM, Weterings BK. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sexual Plant Reproduction. 1999;11(6):297–322.

22. Dickinson HG. The development of pollen. Revue De Cytologie Et De Biologie Vegetales Le Botaniste. 1982;5:5–19.

23. Aboulela M, Nakagawa T, Oshima A, Nishimura K, Tanaka Y. The Arabidopsis COPII components, AtSEC23A and AtSEC23D, are essential for pollen wall development and exine patterning. Journal of Experimental Botany. 2018;69(7):1615–33. doi: 10.1093/jxb/ery015 29390074.

24. Chang HS, Zhang C, Chang YH, Zhu J, Xu XF, Shi ZH, et al. No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis. Plant Physiology. 2012;158(1):264–72. doi: 10.1104/pp.111.184853 22100644.

25. Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in arabidopsis. Plant Physiology. 2008;147(2):852–63. doi: 10.1104/pp.108.118026 18434608

26. Li WL, Liu Y, Douglas CJ. Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning. Plant Physiol. 2017;173(1):167–82. doi: 10.1104/pp.16.00471 27495941.

27. Suzuki T, Narciso JO, Zeng W, van de Meene A, Yasutomi M, Takemura S, et al. KNS4/UPEX1: A Type II Arabinogalactan beta-(1,3)-Galactosyltransferase Required for Pollen Exine Development. Plant Physiol. 2017;173(1):183–205. doi: 10.1104/pp.16.01385 27837085.

28. Wang S, Lu J, Song XF, Ren SC, You C, Xu J, et al. Cytological and Transcriptomic Analyses Reveal Important Roles of CLE19 in Pollen Exine Formation. Plant Physiology. 2017;175(3):1186–202. doi: 10.1104/pp.17.00439 28916592.

29. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell. 2007;19(11):3549–62. doi: 10.1105/tpc.107.054536 18032630.

30. Sorensen AM, Krober S, Unte US, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J. 2003;33(2):413–23. doi: 10.1046/j.1365-313x.2003.01644.x 12535353.

31. Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ. The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J. 2001;28(1):27–39. doi: 10.1046/j.1365-313x.2001.01125.x 11696184.

32. Yang C, Vizcay-Barrena G, Conner K, Wilson ZA. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell. 2007;19(11):3530–48. doi: 10.1105/tpc.107.054981 18032629.

33. Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, et al. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 2007;52(3):528–38. doi: 10.1111/j.1365-313X.2007.03254.x 17727613.

34. Verma N, Burma PK. Regulation of tapetum-specific A9 promoter by transcription factors AtMYB80, AtMYB1 and AtMYB4 in Arabidopsis thaliana and Nicotiana tabacum. Plant Journal. 2017;92(3).

35. de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, et al. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell. 2009;21(2):507–25. doi: 10.1105/tpc.108.062513 19218397.

36. Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza Cde A, et al. Analysis of TETRAKETIDE alpha-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell. 2010;22(12):4067–83. doi: 10.1105/tpc.110.080036 21193572.

37. Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, Souza Cde A, et al. LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell. 2010;22(12):4045–66. doi: 10.1105/tpc.110.080028 21193570.

38. Morant M, Jorgensen K, Schaller H, Pinot F, Moller BL, Werck-Reichhart D, et al. CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell. 2007;19(5):1473–87. doi: 10.1105/tpc.106.045948 17496121.

39. Lou Y, Xu XF, Zhu J, Gu JN, Blackmore S, Yang ZN. The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun. 2014;5:3855. doi: 10.1038/ncomms4855 24804694.

40. Ferguson AC, Pearce S, Band LR, Yang C, Ferjentsikova I, King J, et al. Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytol. 2017;213(2):778–90. doi: 10.1111/nph.14200 27787905.

41. Xiong SX, Lu JY, Lou Y, Teng XD, Gu JN, Zhang C, et al. The transcription factors MS188 and AMS form a complex to activate the expression of CYP703A2 for sporopollenin biosynthesis in Arabidopsis thaliana. Plant J. 2016;88(6):936–46. doi: 10.1111/tpj.13284 27460657.

42. Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, Yuan Z, et al. ABORTED MICROSPORES Acts as a Master Regulator of Pollen Wall Formation in Arabidopsis. Plant Cell. 2014;26(4):1544–56. doi: 10.1105/tpc.114.122986 24781116.

43. Yang J, Tian L, Sun MX, Huang XY, Zhu J, Guan YF, et al. AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiology. 2013;162(2):720–31. doi: 10.1104/pp.113.214940 23580594

44. Wang K, Guo ZL, Zhou WT, Zhang C, Zhang ZY, Lou Y, et al. The Regulation of Sporopollenin Biosynthesis Genes for Rapid Pollen Wall Formation. Plant Physiology. 2018;178(1):283–94. doi: 10.1104/pp.18.00219 30018171.

45. Zhu J, Lou Y, Xu X, Yang ZN. A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol. 2011;53(11):892–900. doi: 10.1111/j.1744-7909.2011.01078.x 21957980.

46. Gabarayeva NI. Principles and recurrent themes in sporoderm development. Harley MM, Morton CM, Blackmore S, editors. Whistable: Kent 2000. 1–17 p.

47. Gabarayeva NI, Grigorjeva VV. Sporoderm and tapetum development in Eupomatia laurina (Eupomatiaceae). An interpretation. Protoplasma. 2014;251(6):1321–45. doi: 10.1007/s00709-014-0631-2 24671645.

48. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DPS. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant Journal for Cell & Molecular Biology. 2005;42(3):315–28.

49. Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D. Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biology. 2005;5:22. doi: 10.1186/1471-2229-5-22 16212660.

50. Huang XY, Niu J, Sun MX, Zhu J, Gao JF, Yang J, et al. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. Plant Cell. 2013;25(2):637–48. doi: 10.1105/tpc.112.107896 23404887.

51. Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA. DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiology. 2001;127(4):1739–49. 11743117.

52. Xu Y, Wang Y, Stroud H, Gu X, Sun B, Gan ES, et al. A matrix protein silences transposons and repeats through interaction with retinoblastoma-associated proteins. Curr Biol. 2013;23(4):345–50. doi: 10.1016/j.cub.2013.01.030 23394836.

53. van Drunen CM, Oosterling RW, Keultjes GM, Weisbeek PJ, van Driel R, Smeekens SC. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Research. 1997;25(19):3904–11. doi: 10.1093/nar/25.19.3904 9380515.

54. Shi ZH, Zhang C, Xu XF, Zhu J, Zhou Q, Ma LJ, et al. Overexpression of AtTTP affects ARF17 expression and leads to male sterility in Arabidopsis. PLoS One. 2015;10(3):e0117317. doi: 10.1371/journal.pone.0117317 25822980.

55. Heslop-Harrison J. Cell walls, cell membranes and protoplasmic connections during meiosis and pollen development. Linskens HF, editor. Amsterdam North Holland 1964.

56. Zhou Q, Zhu J, Cui YL, Yang ZN. Ultrastructure analysis reveals sporopollenin deposition and nexine formation at early stage of pollen wall development in Arabidopsis. Science Bulletin. 2015;60(2):273–6.

57. Agoda-Tandjawa G, Durand S, Gaillard C, Garnier C, Doublier JL. Properties of cellulose/pectins composites: implication for structural and mechanical properties of cell wall. Carbohydrate Polymers. 2012;90(2):1081–91. doi: 10.1016/j.carbpol.2012.06.047 22840043.

58. Radja A, Horsley EM, Lavrentovich MO, Sweeney AM. Pollen Cell Wall Patterns Form from Modulated Phases. Cell. 2019;176(4):856–68.e10. doi: 10.1016/j.cell.2019.01.014 30735635.

59. Gabarayeva NI, Grigorjeva VV. Exine development in Encephalartos altensteinii (Cycadaceae): ultrastructure, substructure and the modes of sporopollenin accumulation. Review of Palaeobotany & Palynology. 2004;132(3):175–93.

60. Gabarayeva NI, Grigorjeva VV, Shavarda AL. Mimicking pollen and spore walls: self-assembly in action. Ann Bot. 2019;123(7):1205–18. doi: 10.1093/aob/mcz027 31220198.

61. Stieglitz H. Role of beta-1,3-glucanase in postmeiotic microspore release. Dev Biol. 1977;57(1):87–97. doi: 10.1016/0012-1606(77)90356-6 863114.

62. Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell. 1992;4(7):759–71. doi: 10.1105/tpc.4.7.759 1392594.

63. Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal. 1998;16(6):735–43. doi: 10.1046/j.1365-313x.1998.00343.x 10069079.

64. Alexander MP. Differential staining of aborted and nonaborted pollen. Stain Technology. 1969;44(3):117–22. doi: 10.3109/10520296909063335 4181665.

65. Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, et al. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 2008;55(2):266–77. doi: 10.1111/j.1365-313X.2008.03500.x 18397379.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 5
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#