ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection
Autoři:
Fernando Mejías-Navarro aff001; Guillermo Rodríguez-Real aff001; Javier Ramón aff001; Rosa Camarillo aff001; Pablo Huertas aff001
Působiště autorů:
Department of Genetics, University of Seville, Sevilla, Spain
aff001; Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, Spain
aff002
Vyšlo v časopise:
ALC1/eIF4A1-mediated regulation of CtIP mRNA stability controls DNA end resection. PLoS Genet 16(5): e32767. doi:10.1371/journal.pgen.1008787
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008787
Souhrn
During repair of DNA double-strand breaks, resection of DNA ends influences how these lesions will be repaired. If resection is activated, the break will be channeled through homologous recombination; if not, it will be simply ligated using the non-homologous end-joining machinery. Regulation of resection relies greatly on modulating CtIP, which can be done by modifying: i) its interaction partners, ii) its post-translational modifications, or iii) its cellular levels, by regulating transcription, splicing and/or protein stability/degradation. Here, we have analyzed the role of ALC1, a chromatin remodeler previously described as an integral part of the DNA damage response, in resection. Strikingly, we found that ALC1 affects resection independently of chromatin remodeling activity or its ability to bind damaged chromatin. In fact, it cooperates with the RNA-helicase eIF4A1 to help stabilize the most abundant splicing form of CtIP mRNA. This function relies on the presence of a specific RNA sequence in the 5′ UTR of CtIP. Therefore, we describe an additional layer of regulation of CtIP—at the level of mRNA stability through ALC1 and eIF4A1.
Klíčová slova:
Cell cycle and cell division – DNA damage – Chromatin – Messenger RNA – Non-homologous end joining – Recombinase polymerase amplification – Small interfering RNAs – Surgical resection
Zdroje
1. Ciccia A, Elledge SJ. The DNA Damage Response: Making It Safe to Play with Knives. Mol Cell. 2010;40: 179–204. doi: 10.1016/j.molcel.2010.09.019 20965415
2. Davis AJA, Chen DDJ. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2: 130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02 24000320
3. Jasin M, Rothstein R. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. 2013;5. doi: 10.1101/cshperspect.a012740 24097900
4. Huertas P. DNA resection in eukaryotes: Deciding how to fix the break. Nat Struct Mol Biol. 2010;17: 11–16. doi: 10.1038/nsmb.1710 20051983
5. Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Crit Rev Biochem Mol Biol. 2016;51: 195–212. doi: 10.3109/10409238.2016.1172552 27098756
6. Makharashvili N, Paull TT. CtIP: A DNA damage response protein at the intersection of DNA metabolism. DNA Repair (Amst). 2015;32: 75–81. doi: 10.1016/j.dnarep.2015.04.016 25957490
7. Liu F, Lee W. CtIP Activates Its Own and Cyclin D1 Promoters via the E2F / RB Pathway during G 1 / S Progression. Mol Cell Biol. 2006;26: 3124–3134. doi: 10.1128/MCB.26.8.3124-3134.2006 16581787
8. Zhang F, Tang H, Jiang Y, Mao Z. The transcription factor GATA3 is required for homologous recombination repair by regulating CtIP expression. Oncogene. 2017;36: 5168–5176. doi: 10.1038/onc.2017.127 28481869
9. Hühn D, Kousholt AN, Sørensen CS, Sartori AA. MiR-19, a component of the oncogenic miR-17∼92 cluster, targets the DNA-end resection factor CtIP. Oncogene. 2015;34: 3977–3984. doi: 10.1038/onc.2014.329 25308476
10. Hashimoto M, Iwabuchi K, Isono M, Matsui T, Matsunaga T, Wakasugi M, et al. Aquarius is required for proper CtIP expression and homologous recombination repair. Sci Rep. 2017;7: 1–11. doi: 10.1038/s41598-016-0028-x 28127051
11. Steger M, Murina O, Hühn D, Ferretti LP, Walser R, Hänggi K, et al. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol Cell. 2013;50: 333–343. doi: 10.1016/j.molcel.2013.03.023 23623683
12. Lafranchi L, de Boer HR, de Vries EG, Ong S, Sartori AA, van Vugt MA. APC/C C dh1 controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 2014;33: 2860–2879. doi: 10.15252/embj.201489017 25349192
13. Huertas P, Jackson SP. Human CtIP Mediates Cell Cycle Control of DNA End Resection and Double Strand Break Repair. J Biol Chem. 2009;284: 9558–9565. doi: 10.1074/jbc.M808906200 19202191
14. Soria-Bretones I, Cepeda-García C, Checa-Rodriguez C, Heyer V, Reina-San-Martin B, Soutoglou E, et al. DNA end resection requires constitutive sumoylation of CtIP by CBX4. Nat Commun. 2017;8. doi: 10.1038/s41467-017-00183-6 28740167
15. Peterson SE, Li Y, Wu-Baer F, Chait BT, Baer R, Yan H, et al. Activation of DSB Processing Requires Phosphorylation of CtIP by ATR. Mol Cell. 2013;49: 657–667. doi: 10.1016/j.molcel.2012.11.020 23273981
16. Yu X, Fu S, Lai M, Baer R, Chen J. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev. 2006;20: 1721–1726. doi: 10.1101/gad.1431006 16818604
17. Yu X, Chen J. DNA Damage-Induced Cell Cycle Checkpoint Control Requires CtIP, a Phosphorylation-Dependent Binding Partner of BRCA1 C-Terminal Domains DNA Damage-Induced Cell Cycle Checkpoint Control Requires CtIP, a Phosphorylation-Dependent Binding Partner of BRCA1. Mol Cell Biol. 2004;24: 9478–9486. doi: 10.1128/MCB.24.21.9478-9486.2004 15485915
18. Cejka P. DNA end resection: Nucleases team up with the right partners to initiate homologous recombination. J Biol Chem. 2015;290: 22931–22938. doi: 10.1074/jbc.R115.675942 26231213
19. Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 2015;35: 6–23. doi: 10.15252/embj.201592595 26628622
20. Ahel D, Hořejší Z, Wiechens N, Polo SEE, Garcia-Wilson E, Ahel I, et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science (80-). 2009;325: 1240–1243. doi: 10.1126/science.1177321 19661379
21. Sellou H, Lebeaupin T, Chapuis C, Smith R, Hegele A, Singh HR, et al. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Mol Biol Cell. 2016;27: 3791–3799. doi: 10.1091/mbc.E16-05-0269 27733626
22. Li Y, Chen L, Chan THM, Liu M, Kong K, Qiu J, et al. SPOCK1 Is Regulated by CHD1L and Blocks Apoptosis and Promotes HCC Cell Invasiveness and Metastasis in Mice. Gastroenterology. 2013;144: 179–191.e4. doi: 10.1053/j.gastro.2012.09.042 23022495
23. Chan THM, Chen L, Liu M, Hu L, Zheng BJ, Poon VKM, et al. Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology. 2012;55: 491–505. doi: 10.1002/hep.24709 21953552
24. Ma N-F, Hu L, Fung JM, Xie D, Zheng B-J, Chen L, et al. Isolation and characterization of a novel oncogene, amplified in liver cancer 1, within a commonly amplified region at 1q21 in hepatocellular carcinoma. Hepatology. 2008;47: 503–510. doi: 10.1002/hep.22072 18023026
25. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells service XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. 1999; 2633–2638.
26. Bennardo N, Cheng A, Huang N, Stark JM. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 2008;4. doi: 10.1371/journal.pgen.1000110 18584027
27. Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol. 2004;24: 9305–16. doi: 10.1128/MCB.24.21.9305-9316.2004 15485900
28. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13: 2633–8. doi: 10.1101/gad.13.20.2633 10541549
29. Huertas P, Cruz-Garcia A. Single Molecule Analysis of Resection Tracks. 2018. pp. 147–154.
30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25: 402–408. doi: 10.1006/meth.2001.1262 11846609
31. Varis A, Salmela AL, Kallio MJ. Cenp-F (mitosin) is more than a mitotic marker. Chromosoma. 2006;115: 288–295. doi: 10.1007/s00412-005-0046-0 16565862
32. Cruz-García A, López-Saavedra A, Huertas P. BRCA1 accelerates CtIP-ediated DNA-end resection. Cell Rep. 2014;9: 451–459. doi: 10.1016/j.celrep.2014.08.076 25310973
33. Zimmermann M, De Lange T. 53BP1: Pro choice in DNA repair. Trends Cell Biol. 2014;24: 108–117. doi: 10.1016/j.tcb.2013.09.003 24094932
34. López-Saavedra A, Gómez-Cabello D, Domínguez-Sánchez MS, Mejías-Navarro F, Fernández-Ávila MJ, Dinant C, et al. A genome-wide screening uncovers the role of CCAR2 as an antagonist of DNA end resection. Nat Commun. 2016;7. doi: 10.1038/ncomms12364 27503537
35. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. 2014;513: 65–70. doi: 10.1038/nature13485 25079319
36. Modelska A, Turro E, Russell R, Beaton J, Sbarrato T, Spriggs K, et al. The malignant phenotype in breast cancer is driven by eIf4A1-mediated changes in the translational landscape. Cell Death Dis. 2015;6: 1–12. doi: 10.1038/cddis.2014.542 25611378
37. Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, Salada G, et al. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene. 1998;17: 2279–2285. doi: 10.1038/sj.onc.1202150 9811458
38. Chen L, Nievera CJ, Lee AYL, Wu X. Cell cycle-dependent complex formation of BRCA1·CtIP·MRN is important for DNA double-strand break repair. J Biol Chem. 2008;283: 7713–7720. doi: 10.1074/jbc.M710245200 18171670
39. Prados-Carvajal R, López-Saavedra A, Cepeda-García C, Jimeno S, Huertas P. Multiple roles of the splicing complex SF3B in DNA end resection and homologous recombination. DNA Repair (Amst). 2018;66–67: 11–23. doi: 10.1016/j.dnarep.2018.04.003 29705135
40. Muto A, Sugihara Y, Shibakawa M, Oshima K, Matsuda T, Nadano D. The mRNA-binding protein Serbp1 as an auxiliary protein associated with mammalian cytoplasmic ribosomes. Cell Biochem Funct. 2018;36: 312–322. doi: 10.1002/cbf.3350 30039520
41. Ahn J-W, Kim S, Na W, Baek S-J, Kim J-H, Min K, et al. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. Nucleic Acids Res. 2015;43: 6321–6333. doi: 10.1093/nar/gkv592 26068472
42. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, et al. Human CtIP promotes DNA end resection. Nature. 2007;450: 509–514. doi: 10.1038/nature06337 17965729
43. Dungrawala H, Rose KL, Bhat KP, Mohni KN, Glick GG, Couch FB, et al. The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability. Mol Cell. 2015;59: 998–1010. doi: 10.1016/j.molcel.2015.07.030 26365379
44. Yeo JE, Lee EH, Hendrickson EA, Sobeck A. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet. 2014;23: 3695–3705. doi: 10.1093/hmg/ddu078 24556218
45. Przetocka S, Porro A, Bolck HA, Walker C, Lezaja A, Trenner A, et al. CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Mol Cell. 2018;72: 568–582.e6. doi: 10.1016/j.molcel.2018.09.014 30344097
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 5
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- The domesticated transposase ALP2 mediates formation of a novel Polycomb protein complex by direct interaction with MSI1, a core subunit of Polycomb Repressive Complex 2 (PRC2)
- Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus
- The phosphorelay BarA/SirA activates the non-cognate regulator RcsB in Salmonella enterica
- Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy