-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaOn the Discovery of TOR As the Target of Rapamycin
article has not abstract
Published in the journal: . PLoS Pathog 11(11): e32767. doi:10.1371/journal.ppat.1005245
Category: Research Matters
doi: https://doi.org/10.1371/journal.ppat.1005245Summary
article has not abstract
Louis Pasteur, who discovered microbes cause disease and developed early vaccines, said, “Chance favors the prepared mind.” With this in mind, I joined the physician-scientist MD-PhD training program at Cornell and Rockefeller Universities in 1984. The National Institutes of Health (NIH) launched the medical scientist training program in 1964 to train physician-scientists as ambassadors between the disparate worlds of science and medicine. But in my case, after completing the first half of medical school and graduate school in 1989, something seemed to be missing. I took a leave of absence from medical school to conduct scientific studies at the Biocenter, University of Basel, Switzerland. This sojourn led to the discovery of mechanisms of action and targets for a new class of drugs used in patients who receive organ transplants, stents for heart disease, and cancer chemotherapy.
My research addressed a simple question: how do cells sense their environment and transfer information inside the cell? Our focus was also simple: the yeast Saccharomyces cerevisiae (baker’s yeast). Although this is an outstanding model, our studies failed to produce the insights we sought. As the future in science began to appear bleak, I contemplated returning to medical school early.
But before conceding failure, I began considering an alternate approach. Could we use some chemicals, or drugs, to understand how cells transfer information? While reading in the library, I came upon a new article in the journal Nature showing the drug cyclosporin could be studied in a similar fungus. I knew from medical school that cyclosporin was a drug given to patients to prevent rejection of transplanted organs, and that it acted on a specific cell of our immune system, but how it did so was a mystery. I returned to the lab, saying that we had to work on this!
I was in the right place at the right time. My advisor, Mike Hall, had been hired to consult for Sandoz Pharmaceuticals, also located in Basel. Scientists at this company discovered and developed cyclosporin as the gold-standard drug for organ transplant patients. Rao Movva was a scientist at Sandoz who had begun studying if yeast could be used to understand how this drug works. He and I met, discussed the projects, and immediately began collaborating to identify targets of immunosuppressive drugs, including cyclosporin and two experimental immunosuppressants, FK506 and rapamycin, not yet used in patients.
All three immunosuppressants are natural products of microbes that live in the soil. All three have potent antifungal activity. Our hypothesis was that they evolved to inhibit growth of competing microbes in the soil, not to do harm to animals. We envisioned harnessing the power of yeast genetics to isolate mutants resistant to each drug and to thereby identify their targets and mechanisms of action. We hypothesized that these drugs inhibit the same proteins in yeast cells as in our immune cells, and that by this approach we could understand how these drugs work. And we envisioned that this information would stimulate further medical advances and new treatments for human disease.
Our approach succeeded spectacularly. With rapamycin, we isolated a large collection of resistant yeast mutants. Through their analysis, we identified three target proteins. The first is an abundant small protein, FKBP12, that serves as a cellular receptor for the drug, forming an FKBP12-rapamycin complex. FKBP12 is conserved from yeast to humans. Yet because it is abundant and present in all cells in the human body, at the time, many immunologists thought it unlikely to be involved in specific drug action. Our yeast genetic studies showed that mutants lacking FKBP12 were viable and completely drug resistant, proving that FKBP12 is essential for drug action.
Our studies revealed two other novel proteins, named TOR1 and TOR2 for target of rapamycin. TOR also means door or gateway in German, and the TOR protein serves as a gateway to cell growth and proliferation. This name also commemorates the city in which TOR was discovered, as Basel is an older European city once ringed by a protective wall with large decorative gates, including one still standing, named the Spalentor. Our genetic and later biochemical studies demonstrated that TOR is the direct target of the FKBP12-rapamycin complex. Several years later, five groups converged to identify the related protein from mammals, including humans, now known as the mammalian target of rapamycin (mTOR). Our subsequent studies (with Maria Cardenas at Duke), and those of others, showed that TOR is a protein kinase localized on intracellular membranes that senses nutrients (amino acids) and governs appropriate physiological responses in cells and animals. Inhibition of TOR by FKBP12-rapamycin blocks fungal growth and suppresses immune responses.
Following these studies, FK506 was FDA approved in 1994 and rapamycin in 1999 for organ transplant recipients to prevent rejection. Rapamycin and its analogs have additional indications in interventional cardiology to prevent coronary artery restenosis and as cancer chemotherapy drugs. Rapamycin inhibits nutrient sensing by TOR, mimicking caloric restriction. Mice fed rapamycin live longer, suggesting aging might someday be reversed with drugs.
As this story illustrates, it is difficult to predict where breakthroughs in medicine will come from, but one certainty is investments in education, training, and basic-science–driven discovery often reap dividends far beyond the original cost, by enabling chance to favor prepared minds.
Štítky
Hygiena a epidemiologie Infekční lékařství Laboratoř
Článek Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Skin InfectionČlánek Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during egress
Článek vyšel v časopisePLOS Pathogens
Nejčtenější tento týden
2015 Číslo 11- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Infekční komplikace virových respiračních infekcí – sekundární bakteriální a aspergilové pneumonie
- Familiární středomořská horečka
-
Všechny články tohoto čísla
- Parasite Glycobiology: A Bittersweet Symphony
- On the Discovery of TOR As the Target of Rapamycin
- Broadening of Virus-Specific CD8 T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers
- PML/TRIM19-Dependent Inhibition of Retroviral Reverse-Transcription by Daxx
- Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System
- Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Induces the Oncogenic miR-17-92 Cluster and Down-Regulates TGF-β Signaling
- Interferon-α Subtypes in an Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms
- Perivascular Arrest of CD8 T Cells Is a Signature of Experimental Cerebral Malaria
- Targeting HIV Reservoir in Infected CD4 T Cells by Dual-Affinity Re-targeting Molecules (DARTs) that Bind HIV Envelope and Recruit Cytotoxic T Cells
- Evolution and Emergence of Enteroviruses through Intra- and Inter-species Recombination: Plasticity and Phenotypic Impact of Modular Genetic Exchanges in the 5’ Untranslated Region
- Interferon-γ Inhibits Ebola Virus Infection
- Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins
- P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes
- Diversity of across Evolutionary Scales
- 50 Years of Disease in Humans: The Dramatic Emergence of a Cluster of Novel Fungal Pathogens
- Worse Comes to Worst: Bananas and Panama Disease—When Plant and Pathogen Clones Meet
- Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection
- Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway
- Structural Insight into Archaic and Alternative Chaperone-Usher Pathways Reveals a Novel Mechanism of Pilus Biogenesis
- Increased Susceptibility of Humanized NSG Mice to Panton-Valentine Leukocidin and Skin Infection
- Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation
- The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions
- The N-terminal Helical Region of the Hepatitis C Virus p7 Ion Channel Protein Is Critical for Infectious Virus Production
- Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus
- Hsp70 Isoforms Are Essential for the Formation of Kaposi’s Sarcoma-Associated Herpesvirus Replication and Transcription Compartments
- Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6C Monocytes and NK Cells via CCL2-CCL3 Cascade
- and Bats: Story of an Emerging Friendship
- Emergence of Pathogenicity in Lagoviruses: Evolution from Pre-existing Nonpathogenic Strains or through a Species Jump?
- Ebolavirus Evolution: Past and Present
- Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis
- Non-Human Primates Harbor Diverse Mammalian and Avian Astroviruses Including Those Associated with Human Infections
- Lactate Dehydrogenase Is Associated with the Parasitophorous Vacuole Membrane and Is a Potential Target for Developing Therapeutics
- Five Questions about Mycoviruses
- Phosphorylation of a Myosin Motor by TgCDPK3 Facilitates Rapid Initiation of Motility during egress
- Ethanolamine Signaling Promotes Niche Recognition and Adaptation during Infection
- Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages
- Memory Th1 Cells Are Protective in Invasive Infection
- Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen
- An -Methyltransferase Is Required for Infection of Tick Cells by
- RNA-seq Brings New Insights to the Intra-Macrophage Transcriptome of Typhimurium
- PLOS Pathogens
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins
- On the Discovery of TOR As the Target of Rapamycin
- Parasite Glycobiology: A Bittersweet Symphony
- Broadening of Virus-Specific CD8 T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání