The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress

Autoři: Sarel J. Urso aff001;  Marcella Comly aff003;  John A. Hanover aff003;  Todd Lamitina aff001
Působiště autorů: Graduate Program in Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America aff001;  Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America aff002;  Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, United States of America aff003;  Division of Child Neurology, Department of Pediatrics, Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States of America aff004
Vyšlo v časopise: The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1008821
Kategorie: Research Article


The conserved O-GlcNAc transferase OGT O-GlcNAcylates serine and threonine residues of intracellular proteins to regulate their function. OGT is required for viability in mammalian cells, but its specific roles in cellular physiology are poorly understood. Here we describe a conserved requirement for OGT in an essential aspect of cell physiology: the hypertonic stress response. Through a forward genetic screen in Caenorhabditis elegans, we discovered OGT is acutely required for osmoprotective protein expression and adaptation to hypertonic stress. Gene expression analysis shows that ogt-1 functions through a post-transcriptional mechanism. Human OGT partially rescues the C. elegans phenotypes, suggesting that the osmoregulatory functions of OGT are ancient. Intriguingly, expression of O-GlcNAcylation-deficient forms of human or worm OGT rescue the hypertonic stress response phenotype. However, expression of an OGT protein lacking the tetracopeptide repeat (TPR) domain does not rescue. Our findings are among the first to demonstrate a specific physiological role for OGT at the organismal level and demonstrate that OGT engages in important molecular functions outside of its well described roles in post-translational O-GlcNAcylation of intracellular proteins.

Klíčová slova:

Alleles – Caenorhabditis elegans – CRISPR – Fluorescence microscopy – Genetic screens – Osmotic shock – RNA interference – Hypertonic


1. Burg MB. Molecular basis of osmotic regulation. The American journal of physiology. 1995;268(6 Pt 2):F983–96. Epub 1995/06/01. doi: 10.1152/ajprenal.1995.268.6.F983 7611465.

2. Terada Y, Inoshita S, Hanada S, Shimamura H, Kuwahara M, Ogawa W, et al. Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells. Kidney Int. 2001;60(2):553–67. Epub 2001/07/28. doi: 10.1046/j.1523-1755.2001.060002553.x 11473638.

3. Stookey JD, Pieper CF, Cohen HJ. Hypertonic hyperglycemia progresses to diabetes faster than normotonic hyperglycemia. Eur J Epidemiol. 2004;19(10):935–44. Epub 2004/12/04. doi: 10.1007/s10654-004-5729-y 15575352.

4. Go WY, Liu X, Roti MA, Liu F, Ho SN. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(29):10673–8. Epub 2004/07/13. doi: 10.1073/pnas.0403139101 15247420; PubMed Central PMCID: PMC489993.

5. Yancey PH. Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea. Sci Prog. 2004;87(Pt 1):1–24. Epub 2005/01/18. doi: 10.3184/003685004783238599 15651637.

6. Moronetti Mazzeo LE, Dersh D, Boccitto M, Kalb RG, Lamitina T. Stress and aging induce distinct polyQ protein aggregation states. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(26):10587–92. doi: 10.1073/pnas.1108766109 22645345; PubMed Central PMCID: PMC3387092.

7. Lee SD, Choi SY, Lim SW, Lamitina ST, Ho SN, Go WY, et al. TonEBP stimulates multiple cellular pathways for adaptation to hypertonic stress: organic osmolyte-dependent and -independent pathways. American journal of physiology Renal physiology. 2011;300(3):F707–15. Epub 2011/01/07. doi: 10.1152/ajprenal.00227.2010 21209002; PubMed Central PMCID: PMC3064130.

8. Bagnasco SM, Uchida S, Balaban RS, Kador PF, Burg MB. Induction of aldose reductase and sorbitol in renal inner medullary cells by elevated extracellular NaCl. Proc Natl Acad Sci U S A. 1987;84(6):1718–20. Epub 1987/03/01. doi: 10.1073/pnas.84.6.1718 3104902; PubMed Central PMCID: PMC304508.

9. Lamitina ST, Morrison R, Moeckel GW, Strange K. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am J Physiol Cell Physiol. 2004;286(4):C785–91. Epub 2003/12/03. doi: 10.1152/ajpcell.00381.2003 14644776.

10. Lamitina T, Huang CG, Strange K. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci U S A. 2006;103(32):12173–8. Epub 2006/08/02. doi: 10.1073/pnas.0602987103 16880390; PubMed Central PMCID: PMC1567714.

11. Rohlfing AK, Miteva Y, Hannenhalli S, Lamitina T. Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans. PLoS One. 2010;5(2):e9010. Epub 2010/02/04. doi: 10.1371/journal.pone.0009010 20126308; PubMed Central PMCID: PMC2814864.

12. Rohlfing AK, Miteva Y, Moronetti L, He L, Lamitina T. The Caenorhabditis elegans mucin-like protein OSM-8 negatively regulates osmosensitive physiology via the transmembrane protein PTR-23. PLoS Genet. 2011;7(1):e1001267. Epub 2011/01/22. doi: 10.1371/journal.pgen.1001267 21253570; PubMed Central PMCID: PMC3017116.

13. Hart GW. Nutrient Regulation of Signaling & Transcription. The Journal of biological chemistry. 2019. Epub 2019/01/11. doi: 10.1074/jbc.AW119.003226 30626734.

14. Olivier-Van Stichelen S, Hanover JA. You are what you eat: O-linked N-acetylglucosamine in disease, development and epigenetics. Curr Opin Clin Nutr Metab Care. 2015;18(4):339–45. Epub 2015/06/08. doi: 10.1097/MCO.0000000000000188 26049631; PubMed Central PMCID: PMC4479189.

15. Capotosti F, Guernier S, Lammers F, Waridel P, Cai Y, Jin J, et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell. 2011;144(3):376–88. Epub 2011/02/08. doi: 10.1016/j.cell.2010.12.030 21295698.

16. Daou S, Mashtalir N, Hammond-Martel I, Pak H, Yu H, Sui G, et al. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc Natl Acad Sci U S A. 2011;108(7):2747–52. Epub 2011/02/03. doi: 10.1073/pnas.1013822108 21285374; PubMed Central PMCID: PMC3041071.

17. Capotosti F, Hsieh JJ, Herr W. Species selectivity of mixed-lineage leukemia/trithorax and HCF proteolytic maturation pathways. Mol Cell Biol. 2007;27(20):7063–72. Epub 2007/08/19. doi: 10.1128/MCB.00769-07 17698583; PubMed Central PMCID: PMC2168920.

18. Liu Y, Hengartner MO, Herr W. Selected elements of herpes simplex virus accessory factor HCF are highly conserved in Caenorhabditis elegans. Mol Cell Biol. 1999;19(1):909–15. Epub 1998/12/22. doi: 10.1128/mcb.19.1.909 9858614; PubMed Central PMCID: PMC83948.

19. Liu H, Gu Y, Qi J, Han C, Zhang X, Bi C, et al. Inhibition of E-cadherin/catenin complex formation by O-linked N-acetylglucosamine transferase is partially independent of its catalytic activity. Mol Med Rep. 2016;13(2):1851–60. Epub 2015/12/29. doi: 10.3892/mmr.2015.4718 26707622.

20. Giles AC, Desbois M, Opperman KJ, Tavora R, Maroni MJ, Grill B. A complex containing the O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 regulates GABA neuron function. J Biol Chem. 2019;294(17):6843–56. Epub 2019/03/13. doi: 10.1074/jbc.RA119.007406 30858176; PubMed Central PMCID: PMC6497937.

21. Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem. 1997;272(14):9308–15. Epub 1997/04/04. doi: 10.1074/jbc.272.14.9308 9083067.

22. Lubas WA, Frank DW, Krause M, Hanover JA. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem. 1997;272(14):9316–24. Epub 1997/04/04. doi: 10.1074/jbc.272.14.9316 9083068.

23. Pujol N, Cypowyj S, Ziegler K, Millet A, Astrain A, Goncharov A, et al. Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol. 2008;18(7):481–9. Epub 2008/04/09. doi: 10.1016/j.cub.2008.02.079 18394898; PubMed Central PMCID: PMC2394561.

24. Rahe DP, Hobert O. Restriction of Cellular Plasticity of Differentiated Cells Mediated by Chromatin Modifiers, Transcription Factors and Protein Kinases. G3 (Bethesda). 2019;9(7):2287–302. Epub 2019/05/16. doi: 10.1534/g3.119.400328 31088904.

25. Lazarus MB, Nam Y, Jiang J, Sliz P, Walker S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature. 2011;469(7331):564–7. Epub 2011/01/18. doi: 10.1038/nature09638 PubMed Central PMCID: PMC3064491. 21240259

26. Lazarus MB, Jiang J, Kapuria V, Bhuiyan T, Janetzko J, Zandberg WF, et al. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science. 2013;342(6163):1235–9. Epub 2013/12/07. doi: 10.1126/science.1243990 24311690; PubMed Central PMCID: PMC3930058.

27. Lubas WA, Hanover JA. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem. 2000;275(15):10983–8. Epub 2001/02/07. doi: 10.1074/jbc.275.15.10983 10753899.

28. Iyer SP, Hart GW. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J Biol Chem. 2003;278(27):24608–16. Epub 2003/05/02. doi: 10.1074/jbc.M300036200 12724313.

29. Hanover JA, Forsythe ME, Hennessey PT, Brodigan TM, Love DC, Ashwell G, et al. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc Natl Acad Sci U S A. 2005;102(32):11266–71. Epub 2005/07/30. doi: 10.1073/pnas.0408771102 16051707; PubMed Central PMCID: PMC1183534.

30. Shafi R, Iyer SP, Ellies LG, O'Donnell N, Marek KW, Chui D, et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A. 2000;97(11):5735–9. Epub 2000/05/10. doi: 10.1073/pnas.100471497 10801981; PubMed Central PMCID: PMC18502.

31. Love DC, Ghosh S, Mondoux MA, Fukushige T, Wang P, Wilson MA, et al. Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc Natl Acad Sci U S A. 2010;107(16):7413–8. Epub 2010/04/07. doi: 10.1073/pnas.0911857107 20368426; PubMed Central PMCID: PMC2867743.

32. Rahman MM, Stuchlick O, El-Karim EG, Stuart R, Kipreos ET, Wells L. Intracellular protein glycosylation modulates insulin mediated lifespan in C.elegans. Aging (Albany NY). 2010;2(10):678–90. Epub 2010/10/19. doi: 10.18632/aging.100208 20952811; PubMed Central PMCID: PMC2993798.

33. Bond MR, Ghosh SK, Wang P, Hanover JA. Conserved nutrient sensor O-GlcNAc transferase is integral to C. elegans pathogen-specific immunity. PLoS One. 2014;9(12):e113231. Epub 2014/12/05. doi: 10.1371/journal.pone.0113231 25474640; PubMed Central PMCID: PMC4256294.

34. Ardiel EL, McDiarmid TA, Timbers TA, Lee KCY, Safaei J, Pelech SL, et al. Insights into the roles of CMK-1 and OGT-1 in interstimulus interval-dependent habituation in Caenorhabditis elegans. Proc Biol Sci. 2018;285(1891). Epub 2018/11/16. doi: 10.1098/rspb.2018.2084 30429311; PubMed Central PMCID: PMC6253365.

35. Taub DG, Awal MR, Gabel CV. O-GlcNAc Signaling Orchestrates the Regenerative Response to Neuronal Injury in Caenorhabditis elegans. Cell Rep. 2018;24(8):1931–8.e3. Epub 2018/08/23. doi: 10.1016/j.celrep.2018.07.078 30134155.

36. Li H, Liu X, Wang D, Su L, Zhao T, Li Z, et al. O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans. Sci Rep. 2017;7:43601. Epub 2017/03/09. doi: 10.1038/srep43601 28272406; PubMed Central PMCID: PMC5341102.

37. Mondoux MA, Love DC, Ghosh SK, Fukushige T, Bond M, Weerasinghe GR, et al. O-linked-N-acetylglucosamine cycling and insulin signaling are required for the glucose stress response in Caenorhabditis elegans. Genetics. 2011;188(2):369–82. Epub 2011/03/29. doi: 10.1534/genetics.111.126490 21441213; PubMed Central PMCID: PMC3122314.

38. Kim Y, Choi J. Early life exposure of a biocide, CMIT/MIT causes metabolic toxicity via the O-GlcNAc transferase pathway in the nematode C. elegans. Toxicol Appl Pharmacol. 2019;376:1–8. Epub 2019/05/18. doi: 10.1016/j.taap.2019.05.012 31100289.

39. Hajduskova M, Baytek G, Kolundzic E, Gosdschan A, Kazmierczak M, Ofenbauer A, et al. MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in Caenorhabditis elegans. Genetics. 2019;211(1):121–39. Epub 2018/11/15. doi: 10.1534/genetics.118.301674 30425042; PubMed Central PMCID: PMC6325694.

40. Guo B, Liang Q, Li L, Hu Z, Wu F, Zhang P, et al. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat Cell Biol. 2014;16(12):1215–26. Epub 2014/11/25. doi: 10.1038/ncb3066 25419848.

41. Su L, Zhao T, Li H, Li H, Su X, Ba X, et al. ELT-2 promotes O-GlcNAc transferase OGT-1 expression to modulate Caenorhabditis elegans lifespan. J Cell Biochem. 2020. Epub 2020/07/07. doi: 10.1002/jcb.29817 32628333.

42. Shih PY, Lee JS, Shinya R, Kanzaki N, Pires-daSilva A, Badroos JM, et al. Newly Identified Nematodes from Mono Lake Exhibit Extreme Arsenic Resistance. Curr Biol. 2019;29(19):3339–44.e4. Epub 2019/10/01. doi: 10.1016/j.cub.2019.08.024 31564490.

43. Rouzaire-Dubois B, O'Regan S, Dubois JM. Cell size-dependent and independent proliferation of rodent neuroblastoma x glioma cells. J Cell Physiol. 2005;203(1):243–50. Epub 2004/10/30. doi: 10.1002/jcp.20240 15515014.

44. Michea L, Ferguson DR, Peters EM, Andrews PM, Kirby MR, Burg MB. Cell cycle delay and apoptosis are induced by high salt and urea in renal medullary cells. Am J Physiol Renal Physiol. 2000;278(2):F209–18. Epub 2000/02/09. doi: 10.1152/ajprenal.2000.278.2.F209 10662725.

45. Pendergrass WR, Angello JC, Kirschner MD, Norwood TH. The relationship between the rate of entry into S phase, concentration of DNA polymerase alpha, and cell volume in human diploid fibroblast-like monokaryon cells. Exp Cell Res. 1991;192(2):418–25. Epub 1991/02/01. doi: 10.1016/0014-4827(91)90060-8 1988287.

46. Gloster TM, Zandberg WF, Heinonen JE, Shen DL, Deng L, Vocadlo DJ. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat Chem Biol. 2011;7(3):174–81. Epub 2011/01/25. doi: 10.1038/nchembio.520 21258330; PubMed Central PMCID: PMC3202988.

47. Pravata VM, Muha V, Gundogdu M, Ferenbach AT, Kakade PS, Vandadi V, et al. Catalytic deficiency of O-GlcNAc transferase leads to X-linked intellectual disability. Proc Natl Acad Sci U S A. 2019;116(30):14961–70. Epub 2019/07/13. doi: 10.1073/pnas.1900065116 31296563; PubMed Central PMCID: PMC6660750.

48. Zhang X, Shu XE, Qian SB. O-GlcNAc modification of eIF4GI acts as a translational switch in heat shock response. Nat Chem Biol. 2018;14(10):909–16. Epub 2018/08/22. doi: 10.1038/s41589-018-0120-6 30127386.

49. Jang I, Kim HB, Seo H, Kim JY, Choi H, Yoo JS, et al. O-GlcNAcylation of eIF2alpha regulates the phospho-eIF2alpha-mediated ER stress response. Biochim Biophys Acta. 2015;1853(8):1860–9. Epub 2015/05/06. doi: 10.1016/j.bbamcr.2015.04.017 25937070.

50. Levine ZG, Walker S. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Annu Rev Biochem. 2016;85:631–57. Epub 2016/06/15. doi: 10.1146/annurev-biochem-060713-035344 27294441.

51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. Epub 2009/06/10. doi: 10.1093/bioinformatics/btp352 19505943; PubMed Central PMCID: PMC2723002.

52. Dokshin GA, Ghanta KS, Piscopo KM, Mello CC. Robust Genome Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors in Caenorhabditis elegans. Genetics. 2018;210(3):781–7. Epub 2018/09/15. doi: 10.1534/genetics.118.301532 30213854; PubMed Central PMCID: PMC6218216.

53. Ghanta KS, Dokshin GA, Mir A, Krishnamurthy PM, Gneid H, Edraki A, et al. 5′ Modifications Improve Potency and Efficacy of DNA Donors for Precision Genome Editing. bioRxiv. 2018:354480. doi: 10.1101/354480

54. Strome S, Wood WB. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1982;79(5):1558–62. Epub 1982/03/01. doi: 10.1073/pnas.79.5.1558 7041123; PubMed Central PMCID: PMC346014.

Článek vyšel v časopise

PLOS Genetics

2020 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle

Zvyšte si kvalifikaci online z pohodlí domova

Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.


Nemáte účet?  Registrujte se