Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability


Autoři: Rebecca L. Adams aff001;  Susan R. Wente aff001
Působiště autorů: Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America aff001
Vyšlo v časopise: Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009033
Kategorie: Research Article
doi: 10.1371/journal.pgen.1009033

Souhrn

In Saccharomyces cerevisiae, the mRNA export receptor Mex67 is recruited to mature nuclear transcripts to mediate mRNA export through the nuclear pore complex (NPC) to the cytoplasm. Mex67 binds transcripts through adaptor proteins such as the poly(A) binding protein Nab2. When a transcript reaches the cytoplasmic face of the NPC, the DEAD-box protein Dbp5 acts to induce a local structural change to release Nab2 and Mex67 in an essential process termed mRNP remodeling. It is unknown how certain proteins (Nab2, Mex67) are released during Dbp5-mediated mRNP remodeling, whereas others remain associated. Here, we demonstrate that Dbp5 associates in close proximity with Mex67 and Nab2 in a cellular complex. Further, fusion of Dbp5 to Nup159 anchors Dbp5 at the cytoplasmic face of the NPC and is sufficient for cell viability. Thus, we speculate that the essential role of Dbp5 in remodeling exporting mRNPs requires its localization to the NPC and is separable from other subcellular functions of Dbp5. This work supports a model where the diverse nuclear, cytoplasmic and NPC functions of Dbp5 in the mRNA lifecycle are not interdependent and that Dbp5 is locally recruited through complex protein-protein interactions to select regions of transcripts for specific removal of transport proteins at the NPC.

Klíčová slova:

Adenosine triphosphatase – Cell fusion – Fluorescence microscopy – Immunoprecipitation – Messenger RNA – Mutant strains – Protein interactions – Saccharomyces cerevisiae


Zdroje

1. Moore MJ. From birth to death: the complex lives of eukaryotic mRNAs. Science. 2005 Sep 2;309(5740):1514–8. doi: 10.1126/science.1111443 16141059

2. Hocine S, Singer RH, Grünwald D. RNA processing and export. Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a000752. doi: 10.1101/cshperspect.a000752 20961978

3. Sheinberger J, Shav-Tal Y. The dynamic pathway of nuclear RNA in eukaryotes. Nucl Austin Tex. 2013 Jun;4(3):195–205.

4. Kelly SM, Corbett AH. Messenger RNA export from the nucleus: a series of molecular wardrobe changes. Traffic Cph Den. 2009 Sep;10(9):1199–208.

5. Grüter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell. 1998 Apr;1(5):649–59. doi: 10.1016/s1097-2765(00)80065-9 9660949

6. Katahira J, Strässer K, Podtelejnikov A, Mann M, Jung JU, Hurt E. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 1999 May 4;18(9):2593–609. doi: 10.1093/emboj/18.9.2593 10228171

7. Santos-Rosa H, Moreno H, Simos G, Segref A, Fahrenkrog B, Panté N, et al. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol. 1998 Nov;18(11):6826–38. doi: 10.1128/mcb.18.11.6826 9774696

8. Segref A, Sharma K, Doye V, Hellwig A, Huber J, Lührmann R, et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 1997 Jun 2;16(11):3256–71. doi: 10.1093/emboj/16.11.3256 9214641

9. Strässer K, Bassler J, Hurt E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J Cell Biol. 2000 Aug 21;150(4):695–706. doi: 10.1083/jcb.150.4.695 10952996

10. Strawn LA, Shen T, Wente SR. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J Biol Chem. 2001 Mar 2;276(9):6445–52. doi: 10.1074/jbc.M008311200 11104765

11. Lund MK, Guthrie C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol Cell. 2005 Nov 23;20(4):645–51. doi: 10.1016/j.molcel.2005.10.005 16307927

12. von Moeller H, Basquin C, Conti E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol. 2009 Mar;16(3):247–54.

13. Schmitt C, von Kobbe C, Bachi A, Panté N, Rodrigues JP, Boscheron C, et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 1999 Aug 2;18(15):4332–47. doi: 10.1093/emboj/18.15.4332 10428971

14. Weirich CS, Erzberger JP, Berger JM, Weis K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell. 2004 Dec 3;16(5):749–60. doi: 10.1016/j.molcel.2004.10.032 15574330

15. Strässer K, Hurt E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 2000 Feb 1;19(3):410–20. doi: 10.1093/emboj/19.3.410 10722314

16. Iglesias N, Tutucci E, Gwizdek C, Vinciguerra P, Von Dach E, Corbett AH, et al. Ubiquitin-mediated mRNP dynamics and surveillance prior to budding yeast mRNA export. Genes Dev. 2010 Sep 1;24(17):1927–38. doi: 10.1101/gad.583310 20810649

17. Aitchison JD, Blobel G, Rout MP. Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science. 1996 Oct 25;274(5287):624–7. doi: 10.1126/science.274.5287.624 8849456

18. Green DM, Marfatia KA, Crafton EB, Zhang X, Cheng X, Corbett AH. Nab2p is required for poly(A) RNA export in Saccharomyces cerevisiae and is regulated by arginine methylation via Hmt1p. J Biol Chem. 2002 Mar 8;277(10):7752–60. doi: 10.1074/jbc.M110053200 11779864

19. Suntharalingam M, Alcázar-Román AR, Wente SR. Nuclear export of the yeast mRNA-binding protein Nab2 is linked to a direct interaction with Gfd1 and to Gle1 function. J Biol Chem. 2004 Aug 20;279(34):35384–91. doi: 10.1074/jbc.M402044200 15208322

20. Tran EJ, Zhou Y, Corbett AH, Wente SR. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell. 2007 Dec 14;28(5):850–9.

21. McCracken S, Fong N, Rosonina E, Yankulov K, Brothers G, Siderovski D, et al. 5’-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 1997 Dec 15;11(24):3306–18. doi: 10.1101/gad.11.24.3306 9407024

22. Ishigaki Y, Li X, Serin G, Maquat LE. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell. 2001 Sep 7;106(5):607–17. 11551508

23. Brune C, Munchel SE, Fischer N, Podtelejnikov AV, Weis K. Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA N Y N. 2005 Apr;11(4):517–31.

24. Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev. 2005 Jan 1;19(1):90–103. doi: 10.1101/gad.1267005 15630021

25. Snay-Hodge CA, Colot HV, Goldstein AL, Cole CN. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 1998 May 1;17(9):2663–76. doi: 10.1093/emboj/17.9.2663 9564048

26. Tseng SS, Weaver PL, Liu Y, Hitomi M, Tartakoff AM, Chang TH. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 1998 May 1;17(9):2651–62. doi: 10.1093/emboj/17.9.2651 9564047

27. Linder P, Jankowsky E. From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011 Aug;12(8):505–16. doi: 10.1038/nrm3154 21779027

28. Bolger TA, Folkmann AW, Tran EJ, Wente SR. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell. 2008 Aug 22;134(4):624–33. doi: 10.1016/j.cell.2008.06.027 18724935

29. Gross T, Siepmann A, Sturm D, Windgassen M, Scarcelli JJ, Seedorf M, et al. The DEAD-box RNA helicase Dbp5 functions in translation termination. Science. 2007 Feb 2;315(5812):646–9. doi: 10.1126/science.1134641 17272721

30. Lari A, Farzam F, Bensidoun P, Oeffinger M, Zenklusen D, Grunwald D, et al. Live-Cell Imaging of mRNP-NPC Interactions in Budding Yeast. Methods Mol Biol Clifton NJ. 2019;2038:131–50.

31. Mikhailova T, Shuvalova E, Ivanov A, Susorov D, Shuvalov A, Kolosov PM, et al. RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Res. 2016 Dec 9;

32. Hodroj D, Recolin B, Serhal K, Martinez S, Tsanov N, Abou Merhi R, et al. An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism. EMBO J. 2017 Mar 17;

33. Lari A, Arul Nambi Rajan A, Sandhu R, Reiter T, Montpetit R, Young BP, et al. A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife. 2019 27;8.

34. Montpetit B, Thomsen ND, Helmke KJ, Seeliger MA, Berger JM, Weis K. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature. 2011 Apr 14;472(7342):238–42. doi: 10.1038/nature09862 21441902

35. Fan J-S, Cheng Z, Zhang J, Noble C, Zhou Z, Song H, et al. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. J Mol Biol. 2009 Apr 24;388(1):1–10. doi: 10.1016/j.jmb.2009.03.004 19281819

36. Folkmann AW, Noble KN, Cole CN, Wente SR. Dbp5, Gle1-IP6 and Nup159: a working model for mRNP export. Nucl Austin Tex. 2011 Dec;2(6):540–8.

37. Murphy R, Wente SR. An RNA-export mediator with an essential nuclear export signal. Nature. 1996 Sep 26;383(6598):357–60. doi: 10.1038/383357a0 8848052

38. Adams RL, Mason AC, Glass L, Aditi null, Wente SR. Nup42 and IP6 coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells. Traffic Cph Den. 2017;18(12):776–90.

39. Strahm Y, Fahrenkrog B, Zenklusen D, Rychner E, Kantor J, Rosbach M, et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J. 1999 Oct 15;18(20):5761–77. doi: 10.1093/emboj/18.20.5761 10610322

40. Noble KN, Tran EJ, Alcázar-Román AR, Hodge CA, Cole CN, Wente SR. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 2011 May 15;25(10):1065–77. doi: 10.1101/gad.2040611 21576266

41. Alcázar-Román AR, Tran EJ, Guo S, Wente SR. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol. 2006 Jul;8(7):711–6. doi: 10.1038/ncb1427 16783363

42. Hodge CA, Tran EJ, Noble KN, Alcazar-Roman AR, Ben-Yishay R, Scarcelli JJ, et al. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev. 2011 May 15;25(10):1052–64. doi: 10.1101/gad.2041611 21576265

43. Heinrich S, Derrer CP, Lari A, Weis K, Montpetit B. Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights. BioEssays News Rev Mol Cell Dev Biol. 2017;39(2).

44. Adams RL, Terry LJ, Wente SR. Nucleoporin FG domains facilitate mRNP remodeling at the cytoplasmic face of the nuclear pore complex. Genetics. 2014 Aug;197(4):1213–24. doi: 10.1534/genetics.114.164012 24931410

45. Hodge CA, Colot HV, Stafford P, Cole CN. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 1999 Oct 15;18(20):5778–88. doi: 10.1093/emboj/18.20.5778 10523319

46. Cole CN, Scarcelli JJ. Unravelling mRNA export. Nat Cell Biol. 2006 Jul;8(7):645–7. doi: 10.1038/ncb0706-645 16820771

47. Zhao J, Jin S-B, Björkroth B, Wieslander L, Daneholt B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 2002 Mar 1;21(5):1177–87. doi: 10.1093/emboj/21.5.1177 11867546

48. Gorsch LC, Dockendorff TC, Cole CN. A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J Cell Biol. 1995 May;129(4):939–55. doi: 10.1083/jcb.129.4.939 7744966

49. Marfatia KA, Crafton EB, Green DM, Corbett AH. Domain Analysis of the Saccharomyces cerevisiaeHeterogeneous Nuclear Ribonucleoprotein, Nab2p DISSECTING THE REQUIREMENTS FOR Nab2p-FACILITATED POLY(A) RNA EXPORT. J Biol Chem. 2003 Feb 28;278(9):6731–40. doi: 10.1074/jbc.M207571200 12496292

50. Kerppola TK. Design and Implementation of Bimolecular Fluorescence Complementation (BiFC) Assays for the Visualization of Protein Interactions in Living Cells. Nat Protoc. 2006;1(3):1278–86. doi: 10.1038/nprot.2006.201 17406412

51. Romei MG, Boxer SG. Split Green Fluorescent Proteins: Scope, Limitations, and Outlook. Annu Rev Biophys. 2019 May 6;48:19–44. doi: 10.1146/annurev-biophys-051013-022846 30786230

52. Anderson JT, Wilson SM, Datar KV, Swanson MS. NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol. 1993 May;13(5):2730–41. doi: 10.1128/mcb.13.5.2730 8474438

53. Saavedra C, Tung KS, Amberg DC, Hopper AK, Cole CN. Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev. 1996 Jul 1;10(13):1608–20. doi: 10.1101/gad.10.13.1608 8682292

54. Saavedra CA, Hammell CM, Heath CV, Cole CN. Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev. 1997 Nov 1;11(21):2845–56. doi: 10.1101/gad.11.21.2845 9353254

55. Stutz F, Kantor J, Zhang D, McCarthy T, Neville M, Rosbash M. The yeast nucleoporin rip1p contributes to multiple export pathways with no essential role for its FG-repeat region. Genes Dev. 1997 Nov 1;11(21):2857–68. doi: 10.1101/gad.11.21.2857 9353255

56. Zander G, Hackmann A, Bender L, Becker D, Lingner T, Salinas G, et al. mRNA quality control is bypassed for immediate export of stress-responsive transcripts. Nature. 2016 Dec 22;540(7634):593–6. doi: 10.1038/nature20572 27951587

57. Carmody SR, Tran EJ, Apponi LH, Corbett AH, Wente SR. The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress. Mol Cell Biol. 2010 Nov;30(21):5168–79. doi: 10.1128/MCB.00735-10 20823268

58. Inhibition of yeast ribonucleic acid polymerases by thiolutin.—Abstract—Europe PMC [Internet]. [cited 2020 Jul 8]. Available from: https://europepmc.org/article/PMC/246415

59. Lee MS, Henry M, Silver PA. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 1996 May 15;10(10):1233–46. doi: 10.1101/gad.10.10.1233 8675010

60. Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U. Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell. 2004 Jan 9;116(1):63–73. doi: 10.1016/s0092-8674(03)01026-2 14718167

61. Palancade B, Zuccolo M, Loeillet S, Nicolas A, Doye V. Pml39, a Novel Protein of the Nuclear Periphery Required for Nuclear Retention of Improper Messenger Ribonucleoparticles. Mol Biol Cell. 2005 Nov;16(11):5258–68. doi: 10.1091/mbc.e05-06-0527 16162818

62. Delavoie F, Soldan V, Rinaldi D, Dauxois J-Y, Gleizes P-E. The path of pre-ribosomes through the nuclear pore complex revealed by electron tomography. Nat Commun. 2019 30;10(1):497.

63. Saroufim M-A, Bensidoun P, Raymond P, Rahman S, Krause MR, Oeffinger M, et al. The nuclear basket mediates perinuclear mRNA scanning in budding yeast. J Cell Biol. 2015 Dec 21;211(6):1131–40. doi: 10.1083/jcb.201503070 26694838

64. Hurt E, Hannus S, Schmelzl B, Lau D, Tollervey D, Simos G. A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J Cell Biol. 1999 Feb 8;144(3):389–401. doi: 10.1083/jcb.144.3.389 9971735

65. Warner JR. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev. 1989 Jun;53(2):256–71. 2666845

66. Henríquez R, Blobel G, Aris JP. Isolation and sequencing of NOP1. A yeast gene encoding a nucleolar protein homologous to a human autoimmune antigen. J Biol Chem. 1990 Feb 5;265(4):2209–15. 2298745

67. Siebrasse JP, Kaminski T, Kubitscheck U. Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9426–31. doi: 10.1073/pnas.1201781109 22615357

68. Rabut G, Doye V, Ellenberg J. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol. 2004 Nov;6(11):1114–21. doi: 10.1038/ncb1184 15502822

69. Derrer CP, Mancini R, Vallotton P, Huet S, Weis K, Dultz E. The RNA export factor Mex67 functions as a mobile nucleoporin. J Cell Biol. 2019 02;218(12):3967–76. doi: 10.1083/jcb.201909028 31753862

70. Kaminski T, Siebrasse JP, Kubitscheck U. A single molecule view on Dbp5 and mRNA at the nuclear pore. Nucl Austin Tex. 2013 Feb;4(1):8–13.

71. Oeffinger M, Wei KE, Rogers R, DeGrasse JA, Chait BT, Aitchison JD, et al. Comprehensive analysis of diverse ribonucleoprotein complexes. Nat Methods. 2007 Nov;4(11):951–6. doi: 10.1038/nmeth1101 17922018

72. Trahan C, Oeffinger M. Targeted cross-linking-mass spectrometry determines vicinal interactomes within heterogeneous RNP complexes. Nucleic Acids Res. 2016 Feb 18;44(3):1354–69. doi: 10.1093/nar/gkv1366 26657640

73. Blobel G. Gene gating: a hypothesis. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8527–9. doi: 10.1073/pnas.82.24.8527 3866238

74. Burns LT, Wente SR. From hypothesis to mechanism: uncovering nuclear pore complex links to gene expression. Mol Cell Biol. 2014 Jun;34(12):2114–20. doi: 10.1128/MCB.01730-13 24615017

75. Domínguez-Sánchez MS, Barroso S, Gómez-González B, Luna R, Aguilera A. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet. 2011 Dec;7(12):e1002386. doi: 10.1371/journal.pgen.1002386 22144908

76. Gómez-González B, García-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marín A, et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 2011 Jun 24;30(15):3106–19. doi: 10.1038/emboj.2011.206 21701562

77. Estruch F, Cole CN. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol Biol Cell. 2003 Apr;14(4):1664–76. doi: 10.1091/mbc.e02-09-0602 12686617

78. Estruch F, Hodge C, Gómez-Navarro N, Peiró-Chova L, Heath CV, Cole CN. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors. BMC Genet. 2012;13:80. doi: 10.1186/1471-2156-13-80 22963203

79. Chatterjee K, Majumder S, Wan Y, Shah V, Wu J, Huang H-Y, et al. Sharing the load: Mex67–Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev. 2017 Nov 1;31(21):2186–98. doi: 10.1101/gad.305904.117 29212662

80. Reuter LM, Meinel DM, Sträßer K. The poly(A)-binding protein Nab2 functions in RNA polymerase III transcription. Genes Dev. 2015 Jul 15;29(14):1565–75. doi: 10.1101/gad.266205.115 26220998

81. Turowski TW, Leśniewska E, Delan-Forino C, Sayou C, Boguta M, Tollervey D. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts. Genome Res. 2016 Jul;26(7):933–44. doi: 10.1101/gr.205492.116 27206856

82. Sarkar A, Pech M, Thoms M, Beckmann R, Hurt E. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nat Struct Mol Biol. 2016 Dec;23(12):1074–82. doi: 10.1038/nsmb.3312 27775710

83. Neumann B, Wu H, Hackmann A, Krebber H. Nuclear Export of Pre-Ribosomal Subunits Requires Dbp5, but Not as an RNA-Helicase as for mRNA Export. PloS One. 2016;11(2):e0149571. doi: 10.1371/journal.pone.0149571 26872259

84. Le Hir H, Andersen GR. Structural insights into the exon junction complex. Curr Opin Struct Biol. 2008 Feb;18(1):112–9. doi: 10.1016/j.sbi.2007.11.002 18164611

85. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory; 1989.

86. Folkmann AW, Collier SE, Zhan X, Aditi null, Ohi MD, Wente SR. Gle1 functions during mRNA export in an oligomeric complex that is altered in human disease. Cell. 2013 Oct 24;155(3):582–93. doi: 10.1016/j.cell.2013.09.023 24243016

87. Görlich D, Kraft R, Kostka S, Vogel F, Hartmann E, Laskey RA, et al. Importin provides a link between nuclear protein import and U snRNA export. Cell. 1996 Oct 4;87(1):21–32. doi: 10.1016/s0092-8674(00)81319-7 8858145

88. Anderson JT, Paddy MR, Swanson MS. PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Oct;13(10):6102–13. doi: 10.1128/mcb.13.10.6102 8413212

89. Johnson SA, Cubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3’ end processing factor Pcf11. Mol Cell. 2009 Jan 30;33(2):215–26. doi: 10.1016/j.molcel.2008.12.007 19110458

90. Lord CL, Timney BL, Rout MP, Wente SR. Altering nuclear pore complex function impacts longevity and mitochondrial function in S. cerevisiae. J Cell Biol. 2015 Mar 16;208(6):729–44. doi: 10.1083/jcb.201412024 25778920

91. Day CA, Kraft LJ, Kang M, Kenworthy AK. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP). Curr Protoc Cytom Editor Board J Paul Robinson Manag Ed Al. 2012 Oct;CHAPTER:Unit2.19.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 10

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Imunitní trombocytopenie (ITP) u dospělých pacientů
nový kurz
Autoři: prof. MUDr. Tomáš Kozák, Ph.D., MBA

Pěnová skleroterapie
Autoři: MUDr. Marek Šlais

White paper - jak vidíme optimální péči o zubní náhrady
Autoři: MUDr. Jindřich Charvát, CSc.

Hemofilie - série kurzů

Faktory ovlivňující léčbu levotyroxinem
Autoři:

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

VIRTUÁLNÍ ČEKÁRNA ČR Jste praktický lékař nebo pediatr? Zapojte se! Jste praktik nebo pediatr? Zapojte se!

×