#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity


Autoři: Hongfeng Chen aff001;  P. Winston Miller aff002;  Daniel L. Johnson aff002;  R. Nicholas Laribee aff001
Působiště autorů: Department of Pathology and Laboratory Medicine, College of Medicine and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States of America aff001;  Molecular Bioinformatics Core and the University of Tennessee Health Science Center Office of Research, University of Tennessee Health Science Center, Memphis, TN, United States of America aff002
Vyšlo v časopise: The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009046
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009046

Souhrn

The Ccr4-Not complex functions as an effector of multiple signaling pathways that control gene transcription and mRNA turnover. Consequently, Ccr4-Not contributes to a diverse array of processes, which includes a significant role in cell metabolism. Yet a mechanistic understanding of how it contributes to metabolism is lacking. Herein, we provide evidence that Ccr4-Not activates nutrient signaling through the essential target of rapamycin complex 1 (TORC1) pathway. Ccr4-Not disruption reduces global TORC1 signaling, and it also upregulates expression of the cell wall integrity (CWI) pathway terminal kinase Mpk1. Although CWI signaling represses TORC1 signaling, we find that Ccr4-Not loss inhibits TORC1 independently of CWI activation. Instead, we demonstrate that Ccr4-Not promotes the function of the vacuole V-ATPase, which interacts with the Gtr1 GTPase-containing EGO complex to stimulate TORC1 in response to nutrient sufficiency. Bypassing the V-ATPase requirement in TORC1 activation using a constitutively active Gtr1 mutant fully restores TORC1 signaling in Ccr4-Not deficient cells. Transcriptome analysis and functional studies revealed that loss of the Ccr4 subunit activates the TORC1 repressed retrograde signaling pathway to upregulate mitochondrial activity. Blocking this mitochondrial upregulation in Ccr4-Not deficient cells further represses TORC1 signaling, and it causes synergistic deficiencies in mitochondrial-dependent metabolism. These data support a model whereby Ccr4-Not loss impairs V-ATPase dependent TORC1 activation that forces cells to enhance mitochondrial metabolism to sustain a minimal level of TORC1 signaling necessary for cell growth and proliferation. Therefore, Ccr4-Not plays an integral role in nutrient signaling and cell metabolism by promoting V-ATPase dependent TORC1 activation.

Klíčová slova:

Cell metabolism – Gene expression – Mitochondria – Signal inhibition – Stress signaling cascade – Vacuoles – Yeast – GTPase signaling


Zdroje

1. Palm W, Thompson CB. Nutrient acquisition strategies of mammalian cells. Nature. 2017;546(7657):234–42. Epub 2017/06/09. doi: 10.1038/nature22379 28593971; PubMed Central PMCID: PMC5541675.

2. Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92. doi: 10.1016/s0092-8674(02)01077-2 12419248.

3. Collart MA. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip Rev RNA. 2016;7(4):438–54. doi: 10.1002/wrna.1332 26821858; PubMed Central PMCID: PMC5066686.

4. Neely GG, Kuba K, Cammarato A, Isobe K, Amann S, Zhang L, et al. A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell. 2010;141(1):142–53. Epub 2010/04/08. doi: 10.1016/j.cell.2010.02.023 20371351; PubMed Central PMCID: PMC2855221.

5. Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555(7697):463–8. Epub 2018/03/15. doi: 10.1038/nature26002 29539633; PubMed Central PMCID: PMC5866719.

6. Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays. 2016;38(10):1048–58. doi: 10.1002/bies.201600092 27502453.

7. Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell. 2001;104(3):377–86. Epub 2001/03/10. S0092-8674(01)00225-2 [pii]. doi: 10.1016/s0092-8674(01)00225-2 11239395.

8. Chen J, Chiang YC, Denis CL. CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. Embo J. 2002;21(6):1414–26. Epub 2002/03/13. doi: 10.1093/emboj/21.6.1414 11889047; PubMed Central PMCID: PMC125924.

9. Albert TK, Hanzawa H, Legtenberg YI, de Ruwe MJ, van den Heuvel FA, Collart MA, et al. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. Embo J. 2002;21(3):355–64. Epub 2002/02/02. doi: 10.1093/emboj/21.3.355 11823428; PubMed Central PMCID: PMC125831.

10. Panasenko OO, Collart MA. Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol Cell Biol. 2011;31(8):1610–23. doi: 10.1128/MCB.01210-10 21321079; PubMed Central PMCID: PMC3126335.

11. Chen H, Sirupangi T, Wu ZH, Johnson DL, Laribee RN. The conserved RNA recognition motif and C3H1 domain of the Not4 ubiquitin ligase regulate in vivo ligase function. Sci Rep. 2018;8(1):8163. Epub 2018/05/29. doi: 10.1038/s41598-018-26576-1 29802328; PubMed Central PMCID: PMC5970261.

12. Garces RG, Gillon W, Pai EF. Atomic model of human Rcd-1 reveals an armadillo-like-repeat protein with in vitro nucleic acid binding properties. Protein Sci. 2007;16(2):176–88. Epub 2006/12/26. ps.062600507 [pii] doi: 10.1110/ps.062600507 17189474; PubMed Central PMCID: PMC2203284.

13. Keskeny C, Raisch T, Sgromo A, Igreja C, Bhandari D, Weichenrieder O, et al. A conserved CAF40-binding motif in metazoan NOT4 mediates association with the CCR4-NOT complex. Genes Dev. 2019;33(3–4):236–52. Epub 2019/01/30. doi: 10.1101/gad.320952.118 30692204; PubMed Central PMCID: PMC6362812.

14. Chan TF, Carvalho J, Riles L, Zheng XF. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc Natl Acad Sci U S A. 2000;97(24):13227–32. Epub 2000/11/15. doi: 10.1073/pnas.240444197 [pii]. 11078525; PubMed Central PMCID: PMC27207.

15. Lenssen E, Oberholzer U, Labarre J, De Virgilio C, Collart MA. Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol Microbiol. 2002;43(4):1023–37. Epub 2002/04/04. 2799 [pii]. doi: 10.1046/j.1365-2958.2002.02799.x 11929548.

16. Laribee RN, Hosni-Ahmed A, Workman JJ, Chen H. Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis. PLoS Genet. 2015;11(3):e1005113. doi: 10.1371/journal.pgen.1005113 25815716; PubMed Central PMCID: PMC4376722.

17. Norbeck J. Carbon source dependent dynamics of the Ccr4-Not complex in Saccharomyces cerevisiae. J Microbiol. 2008;46(6):692–6. Epub 2008/12/25. doi: 10.1007/s12275-008-0122-2 19107399.

18. Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT, Lo TL, et al. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol. 2011;79(4):968–89. Epub 2011/02/09. doi: 10.1111/j.1365-2958.2010.07503.x 21299651.

19. Azzouz N, Panasenko OO, Deluen C, Hsieh J, Theiler G, Collart MA. Specific roles for the Ccr4-Not complex subunits in expression of the genome. RNA. 2009;15(3):377–83. Epub 2009/01/22. rna.1348209 [pii] doi: 10.1261/rna.1348209 19155328.

20. Cui Y, Ramnarain DB, Chiang YC, Ding LH, McMahon JS, Denis CL. Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Mol Genet Genomics. 2008;279(4):323–37. Epub 2008/01/25. doi: 10.1007/s00438-007-0314-1 18214544.

21. Moriya H, Shimizu-Yoshida Y, Omori A, Iwashita S, Katoh M, Sakai A. Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev. 2001;15(10):1217–28. Epub 2001/05/19. doi: 10.1101/gad.884001 11358866; PubMed Central PMCID: PMC313799.

22. Miller JE, Zhang L, Jiang H, Li Y, Pugh BF, Reese JC. Genome-Wide Mapping of Decay Factor-mRNA Interactions in Yeast Identifies Nutrient-Responsive Transcripts as Targets of the Deadenylase Ccr4. G3 (Bethesda). 2018;8(1):315–30. Epub 2017/11/22. doi: 10.1534/g3.117.300415 29158339; PubMed Central PMCID: PMC5765359.

23. Gonzalez A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36(4):397–408. Epub 2017/01/18. doi: 10.15252/embj.201696010 28096180; PubMed Central PMCID: PMC5694944.

24. Dominick G, Bowman J, Li X, Miller RA, Garcia GG. mTOR regulates the expression of DNA damage response enzymes in long-lived Snell dwarf, GHRKO, and PAPPA-KO mice. Aging Cell. 2017;16(1):52–60. doi: 10.1111/acel.12525 27618784; PubMed Central PMCID: PMC5242303.

25. Okada H, Schittenhelm RB, Straessle A, Hafen E. Multi-functional regulation of 4E-BP gene expression by the Ccr4-Not complex. PLoS One. 2015;10(3):e0113902. doi: 10.1371/journal.pone.0113902 25793896; PubMed Central PMCID: PMC4368434.

26. Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011;189(4):1177–201. doi: 10.1534/genetics.111.133363 22174183; PubMed Central PMCID: PMC3241408.

27. Binda M, Peli-Gulli MP, Bonfils G, Panchaud N, Urban J, Sturgill TW, et al. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell. 2009;35(5):563–73. Epub 2009/09/15. doi: 10.1016/j.molcel.2009.06.033 19748353.

28. Dechant R, Saad S, Ibanez AJ, Peter M. Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. Mol Cell. 2014;55(3):409–21. doi: 10.1016/j.molcel.2014.06.002 25002144.

29. Nicastro R, Sardu A, Panchaud N, De Virgilio C. The Architecture of the Rag GTPase Signaling Network. Biomolecules. 2017;7(3). Epub 2017/08/10. doi: 10.3390/biom7030048 28788436; PubMed Central PMCID: PMC5618229.

30. Kane PM. The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev. 2006;70(1):177–91. Epub 2006/03/10. doi: 10.1128/MMBR.70.1.177-191.2006 16524922; PubMed Central PMCID: PMC1393255.

31. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334(6056):678–83. Epub 2011/11/05. doi: 10.1126/science.1207056 22053050; PubMed Central PMCID: PMC3211112.

32. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 2012;46(1):105–10. Epub 2012/03/20. doi: 10.1016/j.molcel.2012.02.009 22424774.

33. Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem. 2014;289(36):25010–20. Epub 2014/07/27. doi: 10.1074/jbc.M114.574335 25063813; PubMed Central PMCID: PMC4155668.

34. Gonzalez A, Shimobayashi M, Eisenberg T, Merle DA, Pendl T, Hall MN, et al. TORC1 promotes phosphorylation of ribosomal protein S6 via the AGC kinase Ypk3 in Saccharomyces cerevisiae. PLoS One. 2015;10(3):e0120250. doi: 10.1371/journal.pone.0120250 25767889; PubMed Central PMCID: PMC4359079.

35. Yerlikaya S, Meusburger M, Kumari R, Huber A, Anrather D, Costanzo M, et al. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell. 2016;27(2):397–409. Epub 2015/11/20. doi: 10.1091/mbc.E15-08-0594 26582391; PubMed Central PMCID: PMC4713140.

36. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell. 2007;26(5):663–74. Epub 2007/06/15. S1097-2765(07)00256-0 [pii] doi: 10.1016/j.molcel.2007.04.020 17560372.

37. Beck T, Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 1999;402(6762):689–92. doi: 10.1038/45287 10604478.

38. Crespo JL, Powers T, Fowler B, Hall MN. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A. 2002;99(10):6784–9. doi: 10.1073/pnas.102687599 11997479; PubMed Central PMCID: PMC124480.

39. Yan G, Lai Y, Jiang Y. The TOR complex 1 is a direct target of Rho1 GTPase. Mol Cell. 2012;45(6):743–53. doi: 10.1016/j.molcel.2012.01.028 22445487; PubMed Central PMCID: PMC3334367.

40. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics. 2006;5(4):749–57. doi: 10.1074/mcp.T500024-MCP200 16340016.

41. Lee D, Ohn T, Chiang YC, Quigley G, Yao G, Liu Y, et al. PUF3 acceleration of deadenylation in vivo can operate independently of CCR4 activity, possibly involving effects on the PAB1-mRNP structure. Journal of molecular biology. 2010;399(4):562–75. Epub 2010/05/04. doi: 10.1016/j.jmb.2010.04.034 20435044; PubMed Central PMCID: PMC2904828.

42. Hook BA, Goldstrohm AC, Seay DJ, Wickens M. Two yeast PUF proteins negatively regulate a single mRNA. J Biol Chem. 2007;282(21):15430–8. Epub 2007/03/29. doi: 10.1074/jbc.M611253200 17389596.

43. Panasenko OO, Somasekharan SP, Villanyi Z, Zagatti M, Bezrukov F, Rashpa R, et al. Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes. Nat Struct Mol Biol. 2019;26(2):110–20. Epub 2019/01/30. doi: 10.1038/s41594-018-0179-5 30692646.

44. Kassem S, Villanyi Z, Collart MA. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA. Nucleic Acids Res. 2017;45(3):1186–99. doi: 10.1093/nar/gkw1059 28180299; PubMed Central PMCID: PMC5388395.

45. Villanyi Z, Ribaud V, Kassem S, Panasenko OO, Pahi Z, Gupta I, et al. The Not5 subunit of the ccr4-not complex connects transcription and translation. PLoS Genet. 2014;10(10):e1004569. doi: 10.1371/journal.pgen.1004569 25340856; PubMed Central PMCID: PMC4207488.

46. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457–68. Epub 2002/11/01. S1097276502006366 [pii]. doi: 10.1016/s1097-2765(02)00636-6 12408816.

47. Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem. 2002;277(45):43495–504. Epub 2002/08/13. doi: 10.1074/jbc.M205408200 12171921.

48. Levin DE. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2005;69(2):262–91. Epub 2005/06/10. doi: 10.1128/MMBR.69.2.262-291.2005 15944456; PubMed Central PMCID: PMC1197416.

49. Bermejo C, Rodriguez E, Garcia R, Rodriguez-Pena JM, Rodriguez de la Concepcion ML, Rivas C, et al. The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell. 2008;19(3):1113–24. Epub 2008/01/11. doi: 10.1091/mbc.e07-08-0742 18184748; PubMed Central PMCID: PMC2262984.

50. Reinke A, Anderson S, McCaffery JM, Yates J, 3rd, Aronova S, Chu S, et al. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem. 2004;279(15):14752–62. Epub 2004/01/23. doi: 10.1074/jbc.M313062200 [pii]. 14736892.

51. Workman JJ, Chen H, Laribee RN. Saccharomyces cerevisiae TORC1 Controls Histone Acetylation by Signaling Through the Sit4/PP6 Phosphatase to Regulate Sirtuin Deacetylase Nuclear Accumulation. Genetics. 2016;203(4):1733–46. doi: 10.1534/genetics.116.188458 27343235; PubMed Central PMCID: PMC4981274.

52. Brewster JL, Gustin MC. Hog1: 20 years of discovery and impact. Science signaling. 2014;7(343):re7. Epub 2014/09/18. doi: 10.1126/scisignal.2005458 25227612.

53. Rousseau A, Bertolotti A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature. 2016;536(7615):184–9. doi: 10.1038/nature18943 27462806; PubMed Central PMCID: PMC4990136.

54. Laribee RN, Shibata Y, Mersman DP, Collins SR, Kemmeren P, Roguev A, et al. CCR4/NOT complex associates with the proteasome and regulates histone methylation. Proc Natl Acad Sci U S A. 2007;104(14):5836–41. doi: 10.1073/pnas.0607996104 17389396; PubMed Central PMCID: PMC1851578.

55. Fu X, Sokolova V, Webb KJ, Old W, Park S. Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase. Proc Natl Acad Sci U S A. 2018;115(52):13246–51. Epub 2018/12/12. doi: 10.1073/pnas.1805353115 30530678; PubMed Central PMCID: PMC6310792.

56. Reinke A, Chen JC, Aronova S, Powers T. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem. 2006;281(42):31616–26. Epub 2006/08/23. M603107200 [pii] doi: 10.1074/jbc.M603107200 16923813.

57. Michaillat L, Mayer A. Identification of genes affecting vacuole membrane fragmentation in Saccharomyces cerevisiae. PLoS One. 2013;8(2):e54160. Epub 2013/02/06. doi: 10.1371/journal.pone.0054160 23383298; PubMed Central PMCID: PMC3562189.

58. Baars TL, Petri S, Peters C, Mayer A. Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell. 2007;18(10):3873–82. Epub 2007/07/27. doi: 10.1091/mbc.e07-03-0205 17652457; PubMed Central PMCID: PMC1995711.

59. Preston RA, Murphy RF, Jones EW. Assay of vacuolar pH in yeast and identification of acidification-defective mutants. Proc Natl Acad Sci U S A. 1989;86(18):7027–31. doi: 10.1073/pnas.86.18.7027 2674942; PubMed Central PMCID: PMC297985.

60. Umemoto N, Yoshihisa T, Hirata R, Anraku Y. Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem. 1990;265(30):18447–53. Epub 1990/10/25. 2145283.

61. Liu M, Tarsio M, Charsky CM, Kane PM. Structural and functional separation of the N- and C-terminal domains of the yeast V-ATPase subunit H. J Biol Chem. 2005;280(44):36978–85. Epub 2005/09/06. doi: 10.1074/jbc.M505296200 16141210; PubMed Central PMCID: PMC1365766.

62. Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics. 2008;7(7):1389–96. Epub 2008/04/15. doi: 10.1074/mcp.M700468-MCP200 18407956; PubMed Central PMCID: PMC2493382.

63. Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science. 2009;325(5948):1682–6. Epub 2009/09/26. doi: 10.1126/science.1172867 19779198; PubMed Central PMCID: PMC2813701.

64. Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods. 2013;10(7):676–82. Epub 2013/06/12. doi: 10.1038/nmeth.2519 23749301; PubMed Central PMCID: PMC3868471.

65. Yang X, Zhang W, Wen X, Bulinski PJ, Chomchai DA, Arines FM, et al. TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy. J Cell Biol. 2020;219(3). Epub 2020/02/12. doi: 10.1083/jcb.201902127 32045480; PubMed Central PMCID: PMC7055007.

66. Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013;4(4):842–51. Epub 2013/08/21. doi: 10.1016/j.celrep.2013.07.024 23954790.

67. Liu Z, Sekito T, Epstein CB, Butow RA. RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p. EMBO J. 2001;20(24):7209–19. doi: 10.1093/emboj/20.24.7209 11742997; PubMed Central PMCID: PMC125777.

68. Chen EJ, Kaiser CA. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol. 2003;161(2):333–47. Epub 2003/04/30. doi: 10.1083/jcb.200210141 12719473; PubMed Central PMCID: PMC2172900.

69. Hughes AL, Gottschling DE. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature. 2012;492(7428):261–5. doi: 10.1038/nature11654 23172144; PubMed Central PMCID: PMC3521838.

70. Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS. Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab. 2011;13(6):668–78. doi: 10.1016/j.cmet.2011.03.018 21641548; PubMed Central PMCID: PMC3110654.

71. Bermingham-McDonogh O, Gralla EB, Valentine JS. The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc Natl Acad Sci U S A. 1988;85(13):4789–93. Epub 1988/07/01. doi: 10.1073/pnas.85.13.4789 3290902; PubMed Central PMCID: PMC280521.

72. Rodriguez A, De La Cera T, Herrero P, Moreno F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J. 2001;355(Pt 3):625–31. Epub 2001/04/20. doi: 10.1042/bj3550625 11311123; PubMed Central PMCID: PMC1221776.

73. Hughes Hallett JE, Luo X, Capaldi AP. Snf1/AMPK promotes the formation of Kog1/Raptor-bodies to increase the activation threshold of TORC1 in budding yeast. eLife. 2015;4. Epub 2015/10/07. doi: 10.7554/eLife.09181 26439012; PubMed Central PMCID: PMC4686425.

74. DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell. 2015;26(3):569–82. Epub 2014/11/28. doi: 10.1091/mbc.E14-06-1088 25428989; PubMed Central PMCID: PMC4310746.

75. Woolstencroft RN, Beilharz TH, Cook MA, Preiss T, Durocher D, Tyers M. Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length. Journal of cell science. 2006;119(Pt 24):5178–92. Epub 2006/12/13. 119/24/5178 [pii] doi: 10.1242/jcs.03221 17158920.

76. Magasanik B, Kaiser CA. Nitrogen regulation in Saccharomyces cerevisiae. Gene. 2002;290(1–2):1–18. Epub 2002/06/14. doi: 10.1016/s0378-1119(02)00558-9 12062797.

77. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54. Epub 2018/06/29. doi: 10.1038/s41556-018-0124-1 29950572; PubMed Central PMCID: PMC6541229.

78. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science. 2015;347(6218):194–8. doi: 10.1126/science.1259472 25567907; PubMed Central PMCID: PMC4384888.

79. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2014;38(2):254–99. doi: 10.1111/1574-6976.12065 24483210; PubMed Central PMCID: PMC4238866.

80. Finley D, Ulrich HD, Sommer T, Kaiser P. The ubiquitin-proteasome system of Saccharomyces cerevisiae. Genetics. 2012;192(2):319–60. doi: 10.1534/genetics.112.140467 23028185; PubMed Central PMCID: PMC3454868.

81. Mulder KW, Inagaki A, Cameroni E, Mousson F, Winkler GS, De Virgilio C, et al. Modulation of Ubc4p/Ubc5p-mediated stress responses by the RING-finger-dependent ubiquitin-protein ligase Not4p in Saccharomyces cerevisiae. Genetics. 2007;176(1):181–92. doi: 10.1534/genetics.106.060640 17513889; PubMed Central PMCID: PMC1893070.

82. Li SC, Kane PM. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta. 2009;1793(4):650–63. Epub 2008/09/13. S0167-4889(08)00281-4 [pii] doi: 10.1016/j.bbamcr.2008.08.003 18786576; PubMed Central PMCID: PMC2906225.

83. Ukleja M, Cuellar J, Siwaszek A, Kasprzak JM, Czarnocki-Cieciura M, Bujnicki JM, et al. The architecture of the Schizosaccharomyces pombe CCR4-NOT complex. Nature communications. 2016;7:10433. doi: 10.1038/ncomms10433 26804377; PubMed Central PMCID: PMC4737751.

84. Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, et al. Architecture of human mTOR complex 1. Science. 2016;351(6268):48–52. Epub 2015/12/19. doi: 10.1126/science.aaa3870 26678875.

85. Pashkova N, Gakhar L, Winistorfer SC, Yu L, Ramaswamy S, Piper RC. WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins. Mol Cell. 2010;40(3):433–43. Epub 2010/11/13. doi: 10.1016/j.molcel.2010.10.018 21070969; PubMed Central PMCID: PMC3266742.

86. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545(7654):365–9. Epub 2017/05/11. doi: 10.1038/nature22344 28489822; PubMed Central PMCID: PMC5695540.

87. Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell. 2013;152(1–2):224–35. Epub 2013/01/22. doi: 10.1016/j.cell.2012.11.046 23332757; PubMed Central PMCID: PMC3552299.

88. Sohn EJ, Jung DB, Lee J, Yoon SW, Won GH, Ko HS, et al. CCR4-NOT2 Promotes the Differentiation and Lipogenesis of 3T3-L1 Adipocytes via Upregulation of PPARx03B3;, CEBPalpha and Inhibition of P-GSK3alpha/beta and beta-Catenin. Cell Physiol Biochem. 2015;37(5):1881–9. Epub 2015/11/20. doi: 10.1159/000438549 26584287.

89. Morita M, Oike Y, Nagashima T, Kadomatsu T, Tabata M, Suzuki T, et al. Obesity resistance and increased hepatic expression of catabolism-related mRNAs in Cnot3+/- mice. EMBO J. 30(22):4678–91. Epub 2011/09/08. emboj2011320 [pii] doi: 10.1038/emboj.2011.320 21897366; PubMed Central PMCID: PMC3243589.

90. Morita M, Siddiqui N, Katsumura S, Rouya C, Larsson O, Nagashima T, et al. Hepatic posttranscriptional network comprised of CCR4-NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proc Natl Acad Sci U S A. 2019;116(16):7973–81. Epub 2019/03/31. doi: 10.1073/pnas.1816023116 30926667; PubMed Central PMCID: PMC6475422.

91. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004;21(11):947–62. Epub 2004/08/31. doi: 10.1002/yea.1142 15334558.

92. Mumberg D, Muller R, Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 1995;156(1):119–22. doi: 10.1016/0378-1119(95)00037-7 7737504.

93. Chen H, Fan M, Pfeffer LM, Laribee RN. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 2012;40(14):6534–46. Epub 2012/05/04. doi: 10.1093/nar/gks345 22553361; PubMed Central PMCID: PMC3413144.


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 10
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#