-
Články
Top novinky
Reklama- Technologie
Top novinky
Reklama- Magazín
Top novinky
Reklama- Kurzy
Top novinky
Reklama- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Dostupnost léků
Top novinky
Reklama- Téma měsíce
Top novinky
ReklamaChromosome number evolves at equal rates in holocentric and monocentric clades
Autoři: Sarah N. Ruckman aff001; Michelle M. Jonika aff001; Claudio Casola aff002; Heath Blackmon aff001
Působiště autorů: Department of Biology, Texas A&M University, Texas, United States of America aff001; Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, Texas, United States of America aff002; Genetics Interdisciplinary Program, Texas A&M University, Texas, United States of America aff003; Department of Ecology and Conservation Biology, Texas A&M, Texas, United States of America aff004
Vyšlo v časopise: Chromosome number evolves at equal rates in holocentric and monocentric clades. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009076
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009076Souhrn
Despite the fundamental role of centromeres two different types are observed across plants and animals. Monocentric chromosomes possess a single region that function as the centromere while in holocentric chromosomes centromere activity is spread across the entire chromosome. Proper segregation may fail in species with monocentric chromosomes after a fusion or fission, which may lead to chromosomes with no centromere or multiple centromeres. In contrast, species with holocentric chromosomes should still be able to safely segregate chromosomes after fusion or fission. This along with the observation of high chromosome number in some holocentric clades has led to the hypothesis that holocentricity leads to higher rates of chromosome number evolution. To test for differences in rates of chromosome number evolution between these systems, we analyzed data from 4,393 species of insects in a phylogenetic framework. We found that insect orders exhibit striking differences in rates of fissions, fusions, and polyploidy. However, across all insects we found no evidence that holocentric clades have higher rates of fissions, fusions, or polyploidy than monocentric clades. Our results suggest that holocentricity alone does not lead to higher rates of chromosome number changes. Instead, we suggest that other co-evolving traits must explain striking differences between clades.
Klíčová slova:
Animal evolution – Centromeres – Evolutionary rate – Chromosome structure and function – Insects – Phylogenetic analysis – Phylogenetics – Polyploidy
Zdroje
1. Wilson AC, Bush GL, Case SM, King MC. Social structuring of mammalian populations and rate of chromosomal evolution. Proceedings of the National Academy of Sciences. 1975;72(12):5061–5.
2. White MJD. Modes of speciation. San Francisco:: WH Freeman; 1978. 455 p.
3. Bush GL. What do we really know about speciation? Perspectives on evolution. 1982 : 119–31.
4. Escudero M, Hahn M, Brown BH, Lueders K, Hipp AL. Chromosomal rearrangements in holocentric organisms lead to reproductive isolation by hybrid dysfunction: The correlation between karyotype rearrangements and germination rates in sedges. American journal of botany. 2016;103(8):1529–36. doi: 10.3732/ajb.1600051 27558707
5. Blackmon H, Justison J, Mayrose I, Goldberg EE. Meiotic drive shapes rates of karyotype evolution in mammals. Evolution. 2019;73(3):511–23. doi: 10.1111/evo.13682 30690715
6. Blackmon H, Ross L, Bachtrog D. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects. Journal of Heredity. 2017;108(1):78–93. doi: 10.1093/jhered/esw047 27543823
7. Petitpierre E. Why beetles have strikingly different rates of chromosomal evolution. Elytron. 1987;1 : 25–32.
8. Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends in ecology & evolution. 2010;25(11):660–9.
9. Guerrero RF, Kirkpatrick M. Local Adaptation and the Evolution of Chromosome Fusions. Evolution. 2014.
10. Rieseberg LH. Chromosomal rearrangements and specieation. Trends Ecol Evol. 2001;16(7):351–8. doi: 10.1016/s0169-5347(01)02187-5 11403867
11. Lucek K. Evolutionary mechanisms of varying chromosome numbers in the radiation of Erebia butterflies. Genes. 2018;9(3):166.
12. Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma. 1995;103(10):685–92. doi: 10.1007/BF00344229 7664615
13. Miga KH. Chromosome-specific centromere sequences provide an estimate of the ancestral chromosome 2 fusion event in hominin genomes. Journal of Heredity. 2017;108(1):45–52. doi: 10.1093/jhered/esw039 27423248
14. Moretti A, Sabato S. Karyotype evolution by centromeric fission inZamia (Cycadales). Plant Systematics and Evolution. 1984;146(3–4):215–23.
15. Harlan JR, deWet JM. On Ö. Winge and a prayer: the origins of polyploidy. The botanical review. 1975;41(4):361–90.
16. Torres EM, Williams BR, Amon A. Aneuploidy: cells losing their balance. Genetics. 2008;179(2):737–46. doi: 10.1534/genetics.108.090878 18558649
17. Matsumoto T, Kitano J. The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. Journal of theoretical biology. 2016;404 : 97–108. doi: 10.1016/j.jtbi.2016.05.036 27259387
18. Pennell MW, Kirkpatrick M, Otto SP, Vamosi JC, Peichel CL, Valenzuela N, et al. Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS genetics. 2015;11(5):e1005237. doi: 10.1371/journal.pgen.1005237 25993542
19. Hill J, Rastas P, Hornett EA, Neethiraj R, Clark N, Morehouse N, et al. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science advances. 2019;5(6):eaau3648. doi: 10.1126/sciadv.aau3648 31206013
20. Lukhtanov VA, Dincă V, Friberg M, Šíchová J, Olofsson M, Vila R, et al. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proceedings of the National Academy of Sciences. 2018;115(41):E9610–E9.
21. Melters DP, Paliulis LV, Korf IF, Chan SW. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research. 2012;20(5):579–93. doi: 10.1007/s10577-012-9292-1 22766638
22. Mola L, Papeschi A. Holokinetic chromosomes at a glance. BAG-Journal of Basic and Applied Genetics. 2006;17(1):17–33.
23. Luceño M, Guerra M. Numerical variations in species exhibiting holocentric chromosomes: a nomenclatural proposal. Caryologia. 1996;49(3–4):301–9.
24. Malheiros-Garde N, Gardé A. Fragmentation as a possible evolutionary process in the genus Luzula DC. Genetica Iberica. 1950;2 : 257–62.
25. Faulkner J. Chromosome studies on Carex section Acutae in north-west Europe. Botanical Journal of the Linnean Society. 1972;65(3):271–301.
26. Cope T, editor Cytology and hybridization in the Juncus bufonius L. aggregate in western Europe. Watsonia; 1985: Citeseer.
27. Escudero M, Hipp AL, Hansen TF, Voje KL, Luceño M. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). New Phytologist. 2012;195(1):237–47. doi: 10.1111/j.1469-8137.2012.04137.x 22489934
28. Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM. Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosome Research. 2009;17(7):883–98. doi: 10.1007/s10577-009-9076-4 19760509
29. Panzera F, Pérez R, Hornos S, Panzera Y, Cestau R, Delgado V, et al. Chromosome numbers in the Triatominae (Hemiptera-Reduviidae): a review. Memórias do Instituto Oswaldo Cruz. 1996;91(4):515–8. doi: 10.1590/s0074-02761996000400021 9070413
30. Mora C, Tittensor DP, Adl S, Simpson AG, Worm B. How many species are there on Earth and in the ocean? PLoS biology. 2011;9(8).
31. Ross L, Blackmon H, Lorite P, Gokhman VE, Hardy NB. Recombination, chromosome number and eusociality in the Hymenoptera. Journal of evolutionary biology. 2015;28(1):105–16. doi: 10.1111/jeb.12543 25382409
32. Vershinina AO, Lukhtanov VA. Evolutionary mechanisms of runaway chromosome number change in Agrodiaetus butterflies. Scientific reports. 2017;7(1):1–9. doi: 10.1038/s41598-016-0028-x 28127051
33. Cook LG. Extraordinary and extensive karyotypic variation: a 48-fold range in chromosome number in the gall-inducing scale insect Apiomorpha (Hemiptera: Coccoidea: Eriococcidae). Genome. 2000;43(2):255–63. 10791813
34. Church SH, Donoughe S, de Medeiros BA, Extavour CG. Insect egg size and shape evolve with ecology but not developmental rate. Nature. 2019;571(7763):58–62. doi: 10.1038/s41586-019-1302-4 31270484
35. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7. doi: 10.1126/science.1257570 25378627
36. Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One. 2014;9(10).
37. FitzJohn RG. Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution. 2012;3(6):1084–92.
38. Team RC. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria2020.
39. Robinson R. Lepidoptera genetics. Oxford: Pergamon Press; 1971.
40. Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, et al. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Current Biology. 2014;24(19):2295–300. doi: 10.1016/j.cub.2014.08.017 25242031
41. Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T, Gaydos L, et al. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature. 2012;484(7395):534–7. doi: 10.1038/nature10973 22495302
42. Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, Rundell RJ, et al. Multiple large-scale gene and genome duplications during the evolution of hexapods. Proceedings of the National Academy of Sciences. 2018;115(18):4713–8.
43. Li Z, Tiley GP, Rundell RJ, Barker MS. Reply to Nakatani and McLysaght: analyzing deep duplication events. Proceedings of the National Academy of Sciences. 2019;116(6):1819–20.
44. Kandul NP, Lukhtanov VA, Pierce NE. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61(3):546–59. doi: 10.1111/j.1558-5646.2007.00046.x 17348919
45. Nakatani Y, McLysaght A. Macrosynteny analysis shows the absence of ancient whole-genome duplication in lepidopteran insects. Proceedings of the National Academy of Sciences. 2019;116(6):1816–8.
46. Glick L, Mayrose I. ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Molecular Biology and Evolution. 2014;31(7):1914–22. doi: 10.1093/molbev/msu122 24710517
47. Mayrose I, Barker MS, Otto SP. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic biology. 2010;59(2):132–44. doi: 10.1093/sysbio/syp083 20525626
48. Zenil-Ferguson R, Ponciano JM, Burleigh JG. Testing the association of phenotypes with polyploidy: An example using herbaceous and woody eudicots. Evolution. 2017;71(5):1138–48. doi: 10.1111/evo.13226 28295270
49. Poggio M, Bressa M, Papeschi A. Karyotype evolution in Reduviidae (Insecta: Heteroptera) with special reference to Stenopodainae and Harpactorinae. Comparative Cytogenetics. 2007;1(2):159–68.
50. White M, Key K, André M, Cheney J. Cytogenetics of the viatica group of morabine grasshoppers II. Kangaroo Island populations. Australian Journal of Zoology. 1969;17(2):313–28.
51. Lande R. The expected fixation rate of chromosomal inversions. Evolution. 1984 : 743–52. doi: 10.1111/j.1558-5646.1984.tb00347.x 28555823
52. Bengtsson BO. Rates of karyotype evolution in placental mammals. Hereditas. 1980;92 : 37–47. doi: 10.1111/j.1601-5223.1980.tb01676.x 6991455
53. Bush GL, Case SM, Wilson AC, Patton JL. Rapid speciation and chromosomal evolution in mammals. Proceedings of the National Academy of Sciences. 1977;74(9):3942–6.
54. Imai HT, Maruyama T, Crozier RH. Rates of Mammalian Karyotype Evolution by the Karyograph Method. The American Naturalist. 1983;121(4):477–88.
55. Larson A, Prager EM, Wilson AC. Chromosomal evolution, speciation and morphological change in vertebrates: the role of social behaviour. Chromosomes Today. 1984;8 : 215–28.
56. Coyne JA. Correlation between heterozygosity and rate of chromosome evolution in animals. The American Naturalist. 1984;123(5):725–9.
Článek RNA-directed DNA MethylationČlánek Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicingČlánek Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traitsČlánek Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 proteaseČlánek Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantationČlánek Selection and hybridization shaped the rapid spread of African honey bee ancestry in the AmericasČlánek Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvaeČlánek DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 10- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
- VIDEO: Terénní tým ECMO zachraňuje životy přímo v pražských ulicích
- Alkohol, zima a léky − sezónní rizika interakcí
- „Jednohubky“ z výzkumu 2025/40 – vánoční a silvestrovská porce
-
Všechny články tohoto čísla
- Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots
- A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata
- A Rad51-independent pathway promotes single-strand template repair in gene editing
- Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits
- C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion
- Dual function of perivascular fibroblasts in vascular stabilization in zebrafish
- The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress
- Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
- A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
- How noncrossover homologs are conjoined and segregated in Drosophila male meiosis I: Stable but reversible homolog linkers require a novel Separase target protein
- Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease
- Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion
- Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation
- Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability
- RNA-directed DNA Methylation
- The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations
- A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices
- Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas
- Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells
- Selection for ancient periodic motifs that do not impart DNA bending
- The ninth life of the cat reference genome, Felis_catus
- The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity
- Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function
- Phenotype-genotype comorbidity analysis of patients with rare disorders provides insight into their pathological and molecular bases
- Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms
- Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen
- Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function
- PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila
- Chromosome number evolves at equal rates in holocentric and monocentric clades
- Genetically predicted telomere length is associated with clonal somatic copy number alterations in peripheral leukocytes
- Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy
- Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations
- DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines
- Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing
- Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms
- Exploring the Complexity of Protein-Level Dosage Compensation that Fine-Tunes Stoichiometry of Multiprotein Complexes
- Diversified regulation of circadian clock gene expression following whole genome duplication
- Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions
- A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling
- CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum
- Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression
- Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum
- Correction: Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Correction: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis
- Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma
- Drosophila Caliban preserves intestinal homeostasis and lifespan through regulating mitochondrial dynamics and redox state in enterocytes
- A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank
- Correction: A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage
- Correction: Architecture of the Escherichia coli nucleoid
- Correction: The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes
- Correction: Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends
- Evolution of linkage and genome expansion in protocells: The origin of chromosomes
- Correction: yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches
- Correction: Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for “polygenic epistasis”
- DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans
- Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change
- AKH-FOXO pathway regulates starvation-induced sleep loss through remodeling of the small ventral lateral neuron dorsal projections
- Function of multiple sclerosis-protective HLA class I alleles revealed by genome-wide protein-quantitative trait loci mapping of interferon signalling
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Technologie