-
Články
Top novinky
Reklama- Technologie
Top novinky
Reklama- Magazín
Top novinky
Reklama- Kurzy
Top novinky
Reklama- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Dostupnost léků
Top novinky
Reklama- Téma měsíce
Top novinky
ReklamaDNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines
Autoři: Alexandre Duprey aff001; Eduardo A. Groisman aff001
Působiště autorů: Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America aff001; Yale Microbial Sciences Institute, West Haven, CT, United States of America aff002
Vyšlo v časopise: DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009085
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1009085Souhrn
DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium. Why, then, do E. coli and Salmonella exhibit different DNA supercoiling when experiencing the same conditions? We now report that this surprising difference reflects disparate activation of their DNA gyrases by the polyamine spermidine and its precursor putrescine. In vitro, Salmonella DNA gyrase activity was sensitive to changes in putrescine concentration within the physiological range, whereas activity of the E. coli enzyme was not. In vivo, putrescine activated the Salmonella DNA gyrase and spermidine the E. coli enzyme. High extracellular Mg2+ decreased DNA supercoiling exclusively in Salmonella by reducing the putrescine concentration. Our results establish the basis for the differences in global DNA supercoiling between E. coli and Salmonella, define a signal transduction pathway regulating DNA supercoiling, and identify potential targets for antibacterial agents.
Klíčová slova:
DNA – Gel electrophoresis – Gene expression – Oat – Reproductive physiology – Salmonella – Salmonella typhimurium – DNA purification
Zdroje
1. Stuger R, Woldringh CL, Weijden CC van der, Vischer NOE, Bakker BM, Spanning RJM van, et al. DNA Supercoiling by Gyrase is Linked to Nucleoid Compaction. Mol Biol Rep. 2002;29 : 79–82. doi: 10.1023/a:1020318705894 12241080
2. Pruss GJ, Drlica K. DNA supercoiling and prokaryotic transcription. Cell. 1989;56 : 521–523. doi: 10.1016/0092-8674(89)90574-6 2645054
3. Dorman CJ. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol Cell Biol. 2019;20 : 26. doi: 10.1186/s12860-019-0211-6 31319794
4. Dunaway M, Ostrander EA. Local domains of supercoiling activate a eukaryotic promoter in vivo. Nature. 1993;361 : 746–748. doi: 10.1038/361746a0 8441472
5. Higgins NP. Measuring In Vivo Supercoil Dynamics and Transcription Elongation Rates in Bacterial Chromosomes. The Bacterial Nucleoid. Humana Press, New York, NY; 2017. pp. 17–27. doi: 10.1007/978-1-4939-7098-8_2 28842872
6. Benjamin KR, Abola PA, Kanaar R, Cozzarelli NR. Contributions of Supercoiling to Tn3 Resolvase and Phage Mu Gin Site-specific Recombination. J Mol Biol. 1996;256 : 50–65. doi: 10.1006/jmbi.1996.0067 8609613
7. Carteau S, Mouscadet JF, Goulaouic H, Subra F, Auclair C. Effect of Topoisomerase Inhibitors on the in Vitro HIV DNA Integration Reaction. Biochem Biophys Res Commun. 1993;192 : 1409–1414. doi: 10.1006/bbrc.1993.1573 8389550
8. Holmes VF, Cozzarelli NR. Closing the ring: Links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci. 2000;97 : 1322–1324. doi: 10.1073/pnas.040576797 10677457
9. Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70 : 369–413. doi: 10.1146/annurev.biochem.70.1.369 11395412
10. Pedro-Botet ML, Yu VL. Treatment strategies for Legionella infection. Expert Opin Pharmacother. 2009;10 : 1109–1121. doi: 10.1517/14656560902900820 19405787
11. Zechiedrich EL, Khodursky AB, Bachellier S, Schneider R, Chen D, Lilley DMJ, et al. Roles of Topoisomerases in Maintaining Steady-state DNA Supercoiling in Escherichia coli. J Biol Chem. 2000;275 : 8103–8113. doi: 10.1074/jbc.275.11.8103 10713132
12. Gilbert N, Allan J. Supercoiling in DNA and chromatin. Curr Opin Genet Dev. 2014;25 : 15–21. doi: 10.1016/j.gde.2013.10.013 24584092
13. Verma SC, Qian Z, Adhya SL. Architecture of the Escherichia coli nucleoid. PLoS Genet. 2019;15. doi: 10.1371/journal.pgen.1008456 31830036
14. Gellert M, Mizuuchi K, O’Dea MH, Nash HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci. 1976;73 : 3872–3876. doi: 10.1073/pnas.73.11.3872 186775
15. Shah P, Swiatlo E. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol. 2008;68 : 4–16. doi: 10.1111/j.1365-2958.2008.06126.x 18405343
16. Noble CG, Maxwell A. The Role of GyrB in the DNA Cleavage-religation Reaction of DNA Gyrase: A Proposed Two Metal-ion Mechanism. J Mol Biol. 2002;318 : 361–371. doi: 10.1016/S0022-2836(02)00049-9 12051843
17. Basu A, Parente AC, Bryant Z. Structural Dynamics and Mechanochemical Coupling in DNA Gyrase. J Mol Biol. 2016;428 : 1833–1845. doi: 10.1016/j.jmb.2016.03.016 27016205
18. Wang JC. Interaction between DNA and an Escherichia coli protein omega. J Mol Biol. 1971;55 : 523–533. doi: 10.1016/0022-2836(71)90334-2 4927945
19. Nitiss JL, Soans E, Rogojina A, Seth A, Mishina M. Topoisomerase Assays. Curr Protoc Pharmacol. 2012;CHAPTER: Unit3.3. doi: 10.1002/0471141755.ph0303s57 22684721
20. Tse-Dinh Y-C, Beran RK. Multiple promoters for transcription of the Escherichia coli DNA topoisomerase I gene and their regulation by DNA supercoiling. J Mol Biol. 1988;202 : 735–742. doi: 10.1016/0022-2836(88)90554-2 2845101
21. Michael AJ. Polyamines in Eukaryotes, Bacteria, and Archaea. J Biol Chem. 2016;291 : 14896–14903. doi: 10.1074/jbc.R116.734780 27268252
22. Gevrekci AÖ. The roles of polyamines in microorganisms. World J Microbiol Biotechnol. 2017;33 : 204. doi: 10.1007/s11274-017-2370-y 29080149
23. Igarashi K, Kashiwagi K. Polyamine Modulon in Escherichia coli: Genes Involved in the Stimulation of Cell Growth by Polyamines. J Biochem (Tokyo). 2006;139 : 11–16. doi: 10.1093/jb/mvj020 16428314
24. Tabor CW, Tabor H. Polyamines in microorganisms. Microbiol Mol Biol Rev. 1985;49 : 81–99.
25. Jung IL, Kim IG. Polyamines and Glutamate Decarboxylase-based Acid Resistance in Escherichia coli. J Biol Chem. 2003;278 : 22846–22852. doi: 10.1074/jbc.M212055200 12670930
26. Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res Microbiol. 2012;163 : 83–91. doi: 10.1016/j.resmic.2011.10.009 22138596
27. Brickman TJ, Armstrong SK. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin. J Bacteriol. 1996;178 : 54–60. doi: 10.1128/jb.178.1.54-60.1996 8550442
28. Jelsbak L, Thomsen LE, Wallrodt I, Jensen PR, Olsen JE. Polyamines Are Required for Virulence in Salmonella enterica Serovar Typhimurium. PLOS ONE. 2012;7:e36149. doi: 10.1371/journal.pone.0036149 22558361
29. Parra-Lopez C, Baer MT, Groisman EA. Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J. 1993;12 : 4053–4062. 8223423
30. Rovinskiy NS, Agbleke AA, Chesnokova ON, Higgins NP. Supercoil Levels in E. coli and Salmonella Chromosomes Are Regulated by the C-Terminal 35–38 Amino Acids of GyrA. Microorganisms. 2019;7 : 81. doi: 10.3390/microorganisms7030081 30875939
31. Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016 [cited 22 Sep 2016]. Available: http://ijs.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.001485?crawler=true
32. Webber MA, Buckner MMC, Redgrave LS, Ifill G, Mitchenall LA, Webb C, et al. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan. J Antimicrob Chemother. 2017;72 : 2755–2763. doi: 10.1093/jac/dkx201 29091182
33. Champion K, Higgins NP. Growth Rate Toxicity Phenotypes and Homeostatic Supercoil Control Differentiate Escherichia coli from Salmonella enterica Serovar Typhimurium. J Bacteriol. 2007;189 : 5839–5849. doi: 10.1128/JB.00083-07 17400739
34. Vetcher AA, McEwen AE, Abujarour R, Hanke A, Levene SD. Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys Chem. 2010;148 : 104–111. doi: 10.1016/j.bpc.2010.02.016 20346570
35. Tabor CW, Tabor H, Xie QW. Spermidine synthase of Escherichia coli: localization of the speE gene. Proc Natl Acad Sci. 1986;83 : 6040–6044. doi: 10.1073/pnas.83.16.6040 3526348
36. Charlier D, Bervoets I. Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids. 2019;51 : 1103–1127. doi: 10.1007/s00726-019-02757-8 31267155
37. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413 : 852–856. doi: 10.1038/35101614 11677609
38. Sugiyama Y, Nakamura A, Matsumoto M, Kanbe A, Sakanaka M, Higashi K, et al. A Novel Putrescine Exporter SapBCDF of Escherichia coli. J Biol Chem. 2016;291 : 26343–26351. doi: 10.1074/jbc.M116.762450 27803167
39. Husna AU, Wang N, Cobbold SA, Newton HJ, Hocking DM, Wilksch JJ, et al. Methionine biosynthesis and transport are functionally redundant for the growth and virulence of Salmonella Typhimurium. J Biol Chem. 2018; jbc.RA118.002592. doi: 10.1074/jbc.RA118.002592 29720401
40. Alatossava T, Jütte H, Kuhn A, Kellenberger E. Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol. 1985;162 : 413–419. doi: 10.1128/JB.162.1.413-419.1985 2984182
41. Fang S-B, Huang C-J, Huang C-H, Wang K-C, Chang N-W, Pan H-Y, et al. speG Is Required for Intracellular Replication of Salmonella in Various Human Cells and Affects Its Polyamine Metabolism and Global Transcriptomes. Front Microbiol. 2017;8. doi: 10.3389/fmicb.2017.02245 29187844
42. Miyamoto S, Kashiwagi K, Ito K, Watanabe S, Igarashi K. Estimation of Polyamine Distribution and Polyamine Stimulation of Protein Synthesis in Escherichia coli. Arch Biochem Biophys. 1993;300 : 63–68. doi: 10.1006/abbi.1993.1009 7678729
43. Romani AM, Scarpa A. Regulation of cellular magnesium. Front Biosci J Virtual Libr. 2000;5:D720–734. doi: 10.2741/romani 10922296
44. Rowatt E, Williams RJP. The binding of polyamines and magnesium to DNA. J Inorg Biochem. 1992;46 : 87–97. doi: 10.1016/0162-0134(92)80012-k 1522415
45. Kongsoi S, Yokoyama K, Suprasert A, Utrarachkij F, Nakajima C, Suthienkul O, et al. Characterization of Salmonella Typhimurium DNA gyrase as a target of quinolones. Drug Test Anal. 2015;7 : 714–720. doi: 10.1002/dta.1744 25381884
46. Workum M, Dooren SJ, Oldenburg N, Molenaar D, Jensen PR, Snoep JL, et al. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol. 1996;20 : 351–360. doi: 10.1111/j.1365-2958.1996.tb02622.x 8733233
47. Kurihara S, Suzuki H, Oshida M, Benno Y. A Novel Putrescine Importer Required for Type 1 Pili-driven Surface Motility Induced by Extracellular Putrescine in Escherichia coli K-12. J Biol Chem. 2011;286 : 10185–10192. doi: 10.1074/jbc.M110.176032 21266585
48. Michael AJ. Polyamine function in archaea and bacteria. J Biol Chem. 2018; jbc.TM118.005670. doi: 10.1074/jbc.TM118.005670 30254075
49. Duprey A, Reverchon S, Nasser W. Bacterial virulence and Fis: adapting regulatory networks to the host environment. Trends Microbiol. 2014;22 : 92–99. doi: 10.1016/j.tim.2013.11.008 24370464
50. Colgan AM, Quinn HJ, Kary SC, Mitchenall LA, Maxwell A, Cameron ADS, et al. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress. Mol Microbiol. 2018;107 : 734–746. doi: 10.1111/mmi.13911 29352745
51. Pomares MF, Corbalán NS, Adler C, de Cristóbal R, Farías RN, Delgado MA, et al. Macrophage environment turns otherwise MccJ25-resistant Salmonella into sensitive. BMC Microbiol. 2013;13 : 95. doi: 10.1186/1471-2180-13-95 23634875
52. Duprey A, Nasser W, Léonard S, Brochier-Armanet C, Reverchon S. Transcriptional start site turnover in the evolution of bacterial paralogous genes–the pelE-pelD virulence genes in Dickeya. FEBS J. 2016;283 : 4192–4207. doi: 10.1111/febs.13921 27727510
53. Chen HD, Jewett MW, Groisman EA. Ancestral Genes Can Control the Ability of Horizontally Acquired Loci to Confer New Traits. PLOS Genet. 2011;7:e1002184. doi: 10.1371/journal.pgen.1002184 21811415
54. Maxwell A. DNA gyrase as a drug target. Trends Microbiol. 1997;5 : 102–109. doi: 10.1016/S0966-842X(96)10085-8 9080608
55. Rubinstein E. History of Quinolones and Their Side Effects. Chemotherapy. 2001;47 : 3–8. doi: 10.1159/000057838 11549783
56. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance, World Health Organization. Critically important antimicrobials for human medicine: ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use. 2017. Available: http://apps.who.int/iris/bitstream/10665/255027/1/9789241512220-eng.pdf
57. Shapiro A, Jahic H, Prasad S, Ehmann D, Thresher J, Gao N, et al. A Homogeneous, High-Throughput Fluorescence Anisotropy-Based DNA Supercoiling Assay. J Biomol Screen. 2010;15 : 1088–1098. doi: 10.1177/1087057110378624 20930214
58. Galán JE, Curtiss R. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun. 1990;58 : 1879–1885. doi: 10.1128/IAI.58.6.1879-1885.1990 2160435
59. Ó Cróinín T, Carroll RK, Kelly A, Dorman CJ. Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006;62 : 869–882. doi: 10.1111/j.1365-2958.2006.05416.x 16999831
60. Datta S, Costantino N, Court DL. A set of recombineering plasmids for gram-negative bacteria. Gene. 2006;379 : 109–115. doi: 10.1016/j.gene.2006.04.018 16750601
61. Davis RW, Botstein D, Roth JR. Advanced Bacterial Genetics: A Manual for Genetic Engineering. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Pr; 1980.
62. Snavely MD, Miller CG, Maguire ME. The mgtB Mg2+ transport locus of Salmonella typhimurium encodes a P-type ATPase. J Biol Chem. 1991;266 : 815–823. 1824701
63. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9 : 357–359. doi: 10.1038/nmeth.1923 22388286
64. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7 : 562–578. doi: 10.1038/nprot.2012.016 22383036
65. Carvajal N, López V, Salas M, Uribe E, Herrera P, Cerpa J. Manganese Is Essential for Catalytic Activity ofEscherichia coliAgmatinase. Biochem Biophys Res Commun. 1999;258 : 808–811. doi: 10.1006/bbrc.1999.0709 10329468
66. Ngo TT, Brillhart KL, Davis RH, Wong RC, Bovaird JH, Digangi JJ, et al. Spectrophotometric assay for ornithine decarboxylase. Anal Biochem. 1987;160 : 290–293. doi: 10.1016/0003-2697(87)90049-2 3578755
Článek Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traitsČlánek Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 proteaseČlánek Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantationČlánek RNA-directed DNA MethylationČlánek Selection and hybridization shaped the rapid spread of African honey bee ancestry in the AmericasČlánek Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicingČlánek Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 10- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
- VIDEO: Terénní tým ECMO zachraňuje životy přímo v pražských ulicích
- Alkohol, zima a léky − sezónní rizika interakcí
- „Jednohubky“ z výzkumu 2025/40 – vánoční a silvestrovská porce
-
Všechny články tohoto čísla
- Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots
- A single Ho-induced double-strand break at the MAT locus is lethal in Candida glabrata
- A Rad51-independent pathway promotes single-strand template repair in gene editing
- Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits
- C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion
- Dual function of perivascular fibroblasts in vascular stabilization in zebrafish
- The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress
- Drosophila phosphatidylinositol-4 kinase fwd promotes mitochondrial fission and can suppress Pink1/parkin phenotypes
- A new domestic cat genome assembly based on long sequence reads empowers feline genomic medicine and identifies a novel gene for dwarfism
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
- How noncrossover homologs are conjoined and segregated in Drosophila male meiosis I: Stable but reversible homolog linkers require a novel Separase target protein
- Predominance of positive epistasis among drug resistance-associated mutations in HIV-1 protease
- Human ABCB1 with an ABCB11-like degenerate nucleotide binding site maintains transport activity by avoiding nucleotide occlusion
- Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation
- Dbp5 associates with RNA-bound Mex67 and Nab2 and its localization at the nuclear pore complex is sufficient for mRNP export and cell viability
- RNA-directed DNA Methylation
- The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations
- A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices
- Selection and hybridization shaped the rapid spread of African honey bee ancestry in the Americas
- Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells
- Selection for ancient periodic motifs that do not impart DNA bending
- The ninth life of the cat reference genome, Felis_catus
- The Ccr4-Not complex regulates TORC1 signaling and mitochondrial metabolism by promoting vacuole V-ATPase activity
- Mutation of NEKL-4/NEK10 and TTLL genes suppress neuronal ciliary degeneration caused by loss of CCPP-1 deglutamylase function
- Phenotype-genotype comorbidity analysis of patients with rare disorders provides insight into their pathological and molecular bases
- Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms
- Insulin signaling represents a gating mechanism between different memory phases in Drosophila larvae
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Identification of the transcription factor Miz1 as an essential regulator of diphthamide biosynthesis using a CRISPR-mediated genome-wide screen
- Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function
- PE homeostasis rebalanced through mitochondria-ER lipid exchange prevents retinal degeneration in Drosophila
- Chromosome number evolves at equal rates in holocentric and monocentric clades
- Genetically predicted telomere length is associated with clonal somatic copy number alterations in peripheral leukocytes
- Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy
- Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations
- DNA supercoiling differences in bacteria result from disparate DNA gyrase activation by polyamines
- Quantitative analysis questions the role of MeCP2 as a global regulator of alternative splicing
- Automated feature extraction from population wearable device data identified novel loci associated with sleep and circadian rhythms
- Exploring the Complexity of Protein-Level Dosage Compensation that Fine-Tunes Stoichiometry of Multiprotein Complexes
- Diversified regulation of circadian clock gene expression following whole genome duplication
- Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- Tissue-specific isoforms of the single C. elegans Ryanodine receptor gene unc-68 control specific functions
- A high-throughput CRISPR interference screen for dissecting functional regulators of GPCR/cAMP signaling
- CenH3 distribution reveals extended centromeres in the model beetle Tribolium castaneum
- Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression
- Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum
- Correction: Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Correction: Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis
- Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma
- Drosophila Caliban preserves intestinal homeostasis and lifespan through regulating mitochondrial dynamics and redox state in enterocytes
- A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank
- Correction: A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage
- Correction: Architecture of the Escherichia coli nucleoid
- Correction: The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes
- Correction: Telomere length-dependent transcription and epigenetic modifications in promoters remote from telomere ends
- Evolution of linkage and genome expansion in protocells: The origin of chromosomes
- Correction: yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches
- Correction: Leveraging correlations between variants in polygenic risk scores to detect heterogeneity in GWAS cohorts
- Modeling epistasis in mice and yeast using the proportion of two or more distinct genetic backgrounds: Evidence for “polygenic epistasis”
- DOT-1.1-dependent H3K79 methylation promotes normal meiotic progression and meiotic checkpoint function in C. elegans
- Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change
- AKH-FOXO pathway regulates starvation-induced sleep loss through remodeling of the small ventral lateral neuron dorsal projections
- Function of multiple sclerosis-protective HLA class I alleles revealed by genome-wide protein-quantitative trait loci mapping of interferon signalling
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Technologie