#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Souvislost polymorfizmu IL-8 -251T>A a IL-18 -607C>A s náchylností ke karcinomu prsu – metaanalýza


Autoři: M. Farbod 1;  S. A. Dastgheib 2;  F. Asadian 3;  M. Karimi-Zarchi 4,5;  S. Sayad 6;  M. Barahman 7;  S. Kargar 8;  M.- Mazaheri 9 11;  H. Neamatzadeh 9,10
Působiště autorů: Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran 1;  Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 2;  Department of Medical Laboratory Sciences, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran 3;  Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran 4;  Endometriosis Research Center, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran 5;  Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran 6;  Firoozgar Clinical Research Development Center (FCRDC), Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran 7;  Department of Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 8;  Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 9;  Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 10;  Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran 11
Vyšlo v časopise: Klin Onkol 2022; 35(3): 181-189
Kategorie: Přehled
doi: https://doi.org/10.48095/ccko2022181

Souhrn

Východiska: Dříve provedené studie hodnotily souvislost polymorfizmu IL-8 -251T>A a IL-18 -607C>A s rizikem karcinomu prsu v různých populacích, ale výsledky zůstávají nekonzistentní a neprůkazné. Provedli jsme tedy tuto metaanalýzu s cílem prozkoumat souvislosti. Metody: Komplexní vyhledávání literatury v databázích PubMed, EMBASE, Web of Science, Scopus, SciELO, SID, and CNKI z hlediska všech vhodných studií publikovaných do 1. října 2020. Pro hodnocení intenzity souvislosti byly použity souhrnné poměry šancí (odds ratio – OR) s 95% intervaly spolehlivosti (confidence interval – CI). Výsledky: Bylo vybráno celkem 12 studií případů a kontrol o polymorfizmu IL-8 -251T>A vč. 7 studií s 2 370 případy a 2 314 kontrolami a 5 studií o polymorfizmu IL-18 -607C>A s 900 případy a 882 kontrolami. Souhrnná data ukázala, že polymorfizmy IL-8 -251T>A (AT vs. TT: OR = 1,187; 95% CI 1,038–1,356; p = 0,012) a IL-18 -607C>A (A vs. T: OR = 1,205; 95% CI 1,055–1,377; p = 0,006; AA vs. TT: OR = 1,379; 95% CI 1,056–1,802; p = 0,018; a AA vs. AT+TT: OR = 1,329; 95% CI 1,053–1,678; p = 0,017) měly obecně souvislost se zvýšeným rizikem karcinomu prsu. Navíc když byly studie stratifikovány podle etnik, u IL-8 -251T>A byla významná souvislost s rizikem karcinomu prsu u Afričanek. Testy publikačního zkreslení u metaanalýzy žádné publikační zkreslení neprokázaly. Závěr: Tato metaanalýza odhalila, že polymorfizmus IL-8 -251T>A a IL-18 -607C>A je spojen s náchylností ke karcinomu prsu. Pro lepší vyhodnocení těchto asociací je ovšem třeba dalších multicentrických studií s různými etniky.

Klíčová slova:

karcinom prsu – metaanalýza – interleukin 8 – interleukin 18 – souvislost


Zdroje

1. Elobaid YE, Aw TC, Grivna M et al. Breast cancer screening awareness, knowledge, and practice among Arab women in the United Arab Emirates: a cross-sectional survey. PLoS ONE 2014; 9 (9): e105783. doi: 10.1371/journal.pone.0105783.

2. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press) 2019; 11: 151–164. doi: 10.2147/BCTT.S176070.

3. O’Donovan J, Newcomb A, Macrae MC et al. Community health workers and early detection of breast cancer in low-income and middle-income countries: a systematic scoping review of the literature. BMJ Global Health 2020; 5 (5): e002466. doi: 10.1136/bmjgh-2020-002466.

4. Yan C, Sun C, Ding X et al. Association of CAV1 polymorphisms with the risks of breast cancer: a systematic review and meta-analysis. Pathol Res Pract 2019; 215 (9): 152518. doi: 10.1016/j.prp.2019.152518.

5. Jin T-F, Zhang W-T, Zhou Z-F. The 6q25.1 rs2046210 poly­morphism is associated with an elevated susceptibility to breast cancer: a meta-analysis of 261,703 subjects. Mol Gen Genomic Med 2019; 7 (3): e553. doi: 10.1002/mgg3.553.

6. Yoo KY, Tajima K, Park SK et al. Postmenopausal obesity as a breast cancer risk factor according to estrogen and progesterone receptor status (Japan). Cancer Lett 2001; 167 (1): 57–63. doi: 10.1016/s0304-3835 (01) 00463-3.

7. Weiderpass E, Meo M, Vainio H. Risk factors for breast cancer, including occupational exposures. Saf Health Work 2011; 2 (1): 1–8. doi: 10.5491/SHAW.2011.2.1.1.

8. Feng Y, Spezia M, Huang S et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 2018; 5 (2): 77–106. doi: 10.1016/j.gendis.2018.05.001.

9. DeSantis C, Ma J, Bryan L et al. Breast cancer statistics, 2013. CA Cancer J Clin 2014; 64 (1): 52–62. doi: 10.3322/caac.21203.

10. Anders CK, Johnson R, Litton J et al. Breast cancer before age 40 years. Semin Oncol 2009; 36: 237–249. doi: 10.1053/j.seminoncol.2009.03.001.

11. Golemis EA, Scheet P, Beck TN et al. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32 (13–14): 868–902. doi: 10.1101/gad.314849.118.

12. Fares J, Fares MY, Khachfe HH et al. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5 (1): 28. doi: 10.1038/s41392-020-0134-x.

13. Ge J, Liu H, Qian D et al. Genetic variants of genes in the NER pathway associated with risk of breast cancer: a large-scale analysis of 14 published GWAS datasets in the DRIVE study. Int J Cancer 2019; 145 (5): 1270–1279. doi: 10.1002/ijc.32371.

14. Han H, Guo W, Shi W et al. Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci Rep 2017; 7: 44877. doi: 10.1038/srep44877.

15. Wang Z, Liu Y, Yang L et al. The polymorphism interleukin-8 -251A/T is associated with a significantly increased risk of cancers from a meta-analysis. Tumour Biol 2014; 35 (7): 7115–7123. doi: 10.1007/s13277-014-1881-5.

16. Huang Q, Wang C, Qiu LJ et al. IL-8-251A>T polymorphism is associated with breast cancer risk: a meta-analysis. J Cancer Res Clin Oncol 2011; 137 (7): 1147–1150. doi: 10.1007/s00432-011-0981-5.

17. Liu Q, Li A, Tian Y et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev 2016; 31: 61–71. doi: 10.1016/j.cytogfr.2016.08.002.

18. Sheikhpour R. The role of interleukin-8 and its mechanism in patients with breast cancer: its relation with oxidative stress and estrogen receptor. Int J Cancer Man 2017; 10. doi: 10.5812/ijcm.8791.

19. Todorović-Raković N, Milovanović J. Interleukin-8 in breast cancer progression. J Interferon Cytokine Res 2013; 33 (10): 563–570. doi: 10.1089/jir.2013.0023.

20. Freund A, Chauveau C, Brouillet JP et al. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells. Oncogene 2003; 22 (2): 256–265. doi: 10.1038/sj.onc.1206113.

21. Singh JK, Simões BM, Clarke RB et al. Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets 2013; 17 (11): 1235–1241. doi: 10.1517/14728222.2013.835398.

22. Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev 2006; 17 (5): 325–337. doi: 10.1016/j.cytogfr.2006.07.002.

23. Smith KC, Bateman AC, Fussell HM et al. Cytokine gene polymorphisms and breast cancer susceptibility and prognosis. Eur J Immunogenet 2004; 31 (4): 167–173. doi: 10.1111/j.1365-2370.2004.00462.x.

24. Snoussi K, Mahfoudh W, Bouaouina N et al. Genetic variation in IL-8 associated with increased risk and poor prognosis of breast carcinoma. Hum Immunol 2006; 67 (1–2): 13–21. doi: 10.1016/j.humimm.2006.03. 018.

25. Vogel U, Christensen J, Dybdahl M et al. Prospective study of interaction between alcohol, NSAID use and polymorphisms in genes involved in the inflammatory response in relation to risk of colorectal cancer. Mutat Res 2007; 624 (1–2): 88–100. doi: 10.1016/j.mrfmmm.2007.04.006.

26. Kamali-Sarvestani E, Aliparasti MR, Atefi S. Association of interleukin-8 (IL-8 or CXCL8) -251T/A and CXCR2 +1208C/T gene polymorphisms with breast cancer. Neoplasma 2007; 54 (6): 484–489.

27. Snoussi K, Mahfoudh W, Bouaouina N et al. Combined effects of IL-8 and CXCR2 gene polymorphisms on breast cancer susceptibility and aggressiveness. BMC Cancer 2010; 10: 283. doi: 10.1186/1471-2407-10-283.

28. Liu S, Cai H, Cheng W et al. Association of VDR polymorphisms (Taq I and Bsm I) with prostate cancer: a new meta-analysis. J Int Med Res 2017; 45 (1): 3–10. doi: 10.1177/0300060516668939.

29. Wang Z, Liu Q-L, Sun W et al. Genetic polymorphisms in inflammatory response genes and their associations with breast cancer risk. Croat Med J 2014; 55 (6): 638–646. doi: 10.3325/cmj.2014.55.638.

30. Khalili-Azad T, Razmkhah M, Ghiam AF et al. Association of interleukin-18 gene promoter polymorphisms with breast cancer. Neoplasma 2009; 56 (1): 22–25. doi: 10.4149/neo_2009_01_22.

31. Taheri M, Hashemi M, Eskandari-Nasab E et al. Association of -607 C/A polymorphism of IL-18 gene (rs1946518) with breast cancer risk in Zahedan, Southeast Iran. Prague Med Rep 2012; 113 (3): 217–222. doi: 10.14712/23362936.2015.19.

32. Back LK d C, Farias TDJ, da Cunha PA et al. Functional polymorphisms of interleukin-18 gene and risk of breast cancer in a Brazilian population. Tissue Antigens 2014; 84 (2): 229–233. doi: 10.1111/tan.12367.

33. Zhao Y, Wang S, Zhang Z et al. Association of IL-18 genetic polymorphisms and haplotypes with breast cancer risk in a Chinese population. Biomed Res 2017; 28: 8433–8437. doi: 10.1371/journal.pone.0073671.

34. Qiao X, Xu D, Sun D et al. Association analysis of interleukin-18 gene promoter region polymorphisms and susceptibility to sporadic breast cancer in Chinese Han women. J Clin Lab Anal 2018; 32 (9): e22591. doi: 10.1002/jcla.22591.

35. Todorović-Raković N, Milovanović J. Interleukin-8 in breast cancer progression. J Interferon Cytokine Res 2013; 33: 563–570. doi: 10.1089/jir.2013.0023.

36. El Ayadi A, Herndon DN, Finnerty CC. Biomarkers in burn patient care. Total burn care (fifth ed.). Elsevier Inc. 2018; 232–235.e2.

37. Charrad R, Kaabachi W, Rafrafi A et al. IL-8 gene variants and expression in childhood asthma. Lung 2017; 195 (6): 749–757. doi: 10.1007/s00408-017-0058-6.

38. Zhang M, Fang T, Wang K et al. Association of polymorphisms in interleukin-8 gene with cancer risk: a meta-analysis of 22 case–control studies. Onco Targets Ther 2016; 9: 3727–3737. doi: 10.2147/OTT.S103159.

39. Salimi E, Karimi-Zarchi M, Dastgheib SA et al. Association of promoter region polymorphisms of IL-6 and IL-18 genes with risk of recurrent pregnancy loss: a systematic review and meta-analysis. Fetal Pediatr Pathol 2019; 39 (4): 346–359. doi: 10.1080/15513815.2019.1652379.

40. Rex DAB, Agarwal N, Prasad TSK et al. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 2020; 14 (2): 257–266. doi: 10.1007/s12079-019-00544-4.

41. Zhang M-J, Zhou Y, Wang X et al. Interleukin-18 gene promoter 607A polymorphism, but not 137C polymorphism, is a protective factor for ischemic stroke in the Chinese population: a meta-analysis. Meta Gene 2016; 9: 165–172. doi: 10.1016/j.mgene.2016.06.006.

42. Yin YW, Hu AM, Sun QQ et al. Association between interleukin-8 gene -251 T/A polymorphism and the risk of peptic ulcer disease: a meta-analysis. Hum Immunol 2013; 74 (1): 125–130. doi: 10.1016/j.humimm.2012.09.006.

43. Li X, Ren D, Li Y et al. Increased cancer risk associated with the -607C/A polymorphism in interleukin-18 gene promoter: an updated meta-analysis including 12,502 subjects. J BUON 2015; 20 (3): 902–917.

44. Bahrami R, Dastgheib SA, Niktabar SM et al. Association of BMP4 rs17563 polymorphism with nonsyndromic cleft lip with or without cleft palate risk: literature review and comprehensive meta-analysis. Fetal Pediatr Pathol 2020; 40 (4): 305–319. doi: 10.1080/15513815.2019.1707916.

45. Veisian M, Tabatabaei RS, Javaheri A et al. Association of interleukin-10 -1082G > a polymorphism with susceptibility to preeclampsia: a systematic review and meta--analysis based on 21 studies. Fetal Pediatr Pathol 2020; 39 (6): 518–532. doi: 10.1080/15513815.2019.1683919.

46. Abbasi H, Dastgheib SA, Hadadan A et al. Association of endothelial nitric oxide synthase 894G > T polymorphism with preeclampsia risk: a systematic review and meta--analysis based on 35 studies. Fetal Pediatr Pathol 2021; 40 (5): 455–470. doi: 10.1080/15513815.2019.1710880.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 3

2022 Číslo 3
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#