Úloha bielkovín tepelného šoku v leukémii


Autoři: K. Kliková;  I. Pilchova;  A. Stefanikova;  J. Hatok;  D. Dobrota;  P. Racay
Působiště autorů: Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
Vyšlo v časopise: Klin Onkol 2016; 29(1): 29-38
Kategorie: Přehled
doi: 10.14735/amko201629

Souhrn

Bielkoviny tepelného šoku (heat shock proteins –  HSPs) HSP27, HSP70 a HSP90 sú molekulárne šaperóny, ktorých expresia sa zvyšuje ovplyvnením buniek po pôsobení enviromentálneho stresu, akými sú tepelný šok, ťažké kovy, oxidačný stres alebo pri patologických podmienkach ako napr. ischémia, infekcia a zápal. Ich protektívna úloha pomáha bunke vyrovnať sa s letálnymi podmienkami. HSPs sú skupina bielkovín, ktoré v zdravých bunkách zodpovedajú za udržanie homeostázy, za interakciu s rôznymi bielkovinovými substrátmi na zabezpečenie ich správneho zbalenia, zabraňujú zbaľovaniu intermediátorov, ktoré vedú ku tvorbe chybne zbalených alebo poškodených molekúl. Ukázalo sa, že interagujú s rôznymi kľúčovými bielkovinami a zohrávajú úlohu v regulácii apoptózy. Viaceré bielkoviny tepelného šoku preukázali priamu interakciu s rozličnými zložkami úzko regulovanej kaspázovo-závislej programovanej bunkovej smrti. Tieto bielkoviny rovnako ovplyvňujú kaspázovo-nezávislú dráhu apoptózy väzbou s apoptickými faktormi. Bielkoviny tepelného šoku sú odlišne exprimované v hematologických malignitách. Z dôvodu ich asociácie a úlohy v leukémiách, HSPs predstavujú zaujímavý cieľ v antileukemickej terapii. Tento prehľadový článok opisuje rôzne molekuly intaragujúce s antiapoptotickými bielkovinami HSP70 a HSP90, ktoré by mohli byť využité v nádorovej terapii na základe ich inhibície.

Klúčové slová:
bielkoviny tepelného šoku –  inhibítory –  leukémia –  apoptóza

Táto práca bola podporená grantom „Zvýšenie možností kariérneho rastu vo výskume a vývoji v oblasti lekárskych vied“ (IMTS 26110230067), operačný program Vzdelávanie, doc. MUDr. Ján Staško, PhD., mim. prof., 2012–2015.

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do biomedicínských časopisů.

Obdržané:
7. 8. 2015

Prijaté:
11. 10. 2015


Zdroje

1. De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock 1999; 11: 1– 12.

2. Ritos­sa F. A new puf­f­ing pattern induced by heat shock and DNP in drosophila. Experientia 1962; 18: 571– 573.

3. Khalil AA, Kabapy NF, Deraz SF et al. Heat shock proteins in oncology: dia­gnostic bio­markers or therapeutic targets? Biochim Biophys Acta 2011; 1816: 89– 104. doi: 10.1016/ j.bbcan.2011.05.001.

4. Jol­ly C, Morimoto RI. Role of the teat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92(19): 1564– 1572.

5. Parcel­lier A, Gurbuxani S, Schmitt E et al. Heat shock proteins, cel­lular chaperones that modulate mitochondrial cell death pathways. Biochem Biophysic Res Com­mun 2003; 304(3): 505– 512.

6. Thomas X, Campos L, Le QH et al. Heat shock proteins and acute leukemias. Hematology 2005; 10(3): 225– 235.

7. Schmitt E, Gehrmann M, Brunet M et al. Intracel­lular and extrecel­lular functions of heat shock proteins: repercus­sions in cancer therapy. J Leukoc Biol 2007; 81(1): 15– 27.

8. Gar­rido C, Brunet M, Didelot Y et al. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 2006; 5(22): 2592– 2601.

9. Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 2005; 280(39): 33097– 33100.

10. Wu C. Heat shock transcription factors: structure and regulation. An­nu Rev Cell Dev Biol 1995; 11: 441– 469.

11. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12(24): 3788– 3796.

12. Nakai A, Tanabe M, Kawazoe Y et al. HSF4, a new member of the human heat shock factor family which lacks pro­perties of a transcriptional activator. Mol Cell Biol 1997; 17(1): 469– 481.

13. Tanabe M, Sasai N, Nagata K et al. The mam­malian HSF4 gene generates both an activator and a repres­sor of heat shock genes by alternative splicing. J Biol Chem 1999; 274(39): 27845– 27856.

14. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: dia­gnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005; 10(2): 86– 103.

15. Frejtag W, Zhang Y, Dai R et al. Heat shock factor-4 (HSF-4a) repres­ses basal transcription through interaction with TFIIF. J Biol Chem 2001; 276(18): 14685– 14694.

16. Zhang Y, Frejtag W, Dai R et al. Heat shock factor-4 (HSF-4a) is a repres­sor of HSF-1 mediated transcription. J Cell Biochem 2001; 82(4): 692– 703.

17. Nakai A. New aspects in the vertebrate heat shock factor system: Hsf3 and Hsf4. Cell Stress Chaperones 1999; 4(2): 86– 93.

18. Bu L, Jin Y, Shi Y et al. Mutant DNA-bind­ing domain of HSF4 is as­sociated with autosomal dominant lamel­lar and Marner cataract. Nat Genet 2002; 31(3): 276– 278.

19. Fujimoto M, Izu H, Seki K et al. HSF4 is required for normal cell growth and dif­ferentiation dur­ing mouse lens development. EMBO J 2004; 23(21): 4297– 4306.

20. Thomas X, Campos L, Mounier C et al. Expres­sion of heat shock proteins is as­siciated with major adverse prog­nostic factors in acute myeloid leukemia. Leuk Res 2005; 29(9): 1049– 1458.

21. Duval A, Olaru D, Campos L et al. Expres­sion and prognostic significance of heat shock proteins in myelodysplastic syndromes. Haematologica 2006; 91(5): 713– 714.

22. Guo F, Sigua C, Bali P et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cel­ls. Blood 2005; 105(3): 1246– 1255.

23. Lee JS, Lee JJ, Seo JS. HSP70 deficiency results in activation of c-Jun N-terminal kinase, extracel­lular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 2005; 280(8): 6634– 6641.

24. Stankiewicz AR, Lachapel­le G, Foo CP et al. HSP70 inhibits heat-induced apoptosis upstream of mitochondria by prevent­ing Bax translocation. J Biol Chem 2005; 280(46): 38729– 38739.

25. Beere HM, Wolf BB, Cain K et al. Heat shock protein 70 inhibits apoptosis by prevent­ing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000; 2(28): 469– 475.

26. Gyrd-Hansen M, Nylandsted J, Jaattela M. Heat shock protein 70 promotes cancer cell viability by safeguard­ing lysosomal integrity. Cell Cycle 2004; 3(12): 1484– 1485.

27. Bivik C, Rosdahl I, Ol­linger K. HSP70 protects against UVB induced apoptosis by prevent­ing release of cathepsins and cytochrome C in human melanocytes. Carcinogenesis 2007; 28(3): 537– 544.

28. Trinklein ND, Chen WC, Kingston RE et al. Transcriptional regulation and bind­ing of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes dur­ing thermal stress and dif­ferentiation. Cell Stress Chaperones 2004; 9(1): 21– 28.

29. Lan­neau D, de Thonel A, Maurel S et al. Apoptosis versus cell dif­ferentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 2007; 1(1): 53– 60.

30. Zermati Y, Gar­rido C, Amsel­lem S et al. Caspase activation is required for terminal erythroid dif­ferentiation. J Exp Med 2001; 193(2): 247– 254.

31. Ribeil JA, Zermati Y, Vandekerckhove J et al. HSP70 regulates erythropoiesis by prevent­ing caspase-3-mediated cleavage of GATA-1. Nature 2007; 445(7123): 102– 105.

32. Zhang Y, Wang JS, Chen Ll et al. Repres­sion of HSP90 beta gene by p53 in UV ir­radiation-induced apoptosis of Jurkat cel­ls. J Biol Chem 2004; 279(41): 42545– 42551.

33. Lewis J, Devin A, Mil­ler A et al. Disruption of HSP90 function results in degradation of the death domain kinase, receptor-interact­ing protein (RIP), and block­age of tumor necrosis factor-induced factor-kappaB activation. J Biol Chem 2000; 275(14): 10519– 10526.

34. Lan­neau D, Brunet M, Frisan E et al. Heat shock proteins: es­sencial proteins for apoptosis regulation. J Cell Mol Med 2008; 3(12): 743– 761. doi: 10.1111/ j.1582-4934.2008.00273.x.

35. Cardone MH, Roy N, Sten­nicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282(5392): 1318– 1321.

36. Ozes O, Mayo L, Gustin JA et al. NF-κB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999; 401(6748): 82– 85.

37. Jego G, Hazoumé A, Seigneuric R et al. Target­ing heat shock proteins in cancer. Cancer Lett 2013; 332(2): 275– 285. doi: 10.1016/ j.canlet.2010.10.014.

38. Kampinga HH, Hageman J, Vos MJ et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009; 14(1): 105– 111. doi: 10.1007/ s12192-008-0068-7.

39. Sredhaar AS, Kalmar E, Csermely P et al. HSP90 isoforms: functions, expres­sion and clinical importance. FEBS Lett 2004; 562(1– 3): 11– 15.

40. Pearl LH, Prodromou C. Structure, function, and mechanism of the HSP90 molecular chaperone. Adv Protein Chem 2001; 59: 157– 186.

41. Onuoha SC, Coulstock ET, Gros­smann JG et al. Structural studies on the co-chaperone Hop and its complexes with HSP90. J Mol Biol 2008; 379(4): 732– 744. doi: 10.1016/ j.jmb.2008.02.013.

42. Schweinfest CW, Graber MW, Henderson KW et al. Clon­ing and sequence analysis of Hsp89alpha deltaN, a new member of theHsp90 gene family. Biochim Biophys Acta 1998; 1398(1): 18– 24.

43. Prodromou C, Panaretou B, Chohan S et al. The ATPase cycle of Hsp90 drives a molecular ‚clamp‘ via transient dimerization of the N-terminal domains. EMBO J 2000; 19(16): 4383– 4392.

44. Whitesell L, Lindquist SL. HSP90 and the chaperon­ing of cancer. Nat Rev Cancer 2005; 5(10): 761– 772.

45. Eustace BK, Sakurai T, Stewart JK et al. Functional proteomic screens reveal an es­sential extracel­lular role for HSP90 alpha in cancer cell invasivenes­s. Nat Cell Biol 2004; 6(6): 507– 514.

46. Jaattela M, Wis­s­ing K, Kokholm T et al. HSP70 exerts its anti-apoptotic function downstream of caspase-3 like proteases. EMBO J 1998; 17(21): 6124– 6134.

47. Raynes D, Guer­riero V Jr. Inhibition of HSP70 ATPase activity and protein renaturation by a novel HSP70-bind­ing protein. J Biol Chem 1998; 273(49): 32883– 32888.

48. Kabani M, McLel­lan C, Raynes DA et al. HspBP1, a homologue of the yeast Fes1 and Sls1proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett 2003; 531(2): 339– 342.

49. Sedlackova L, Spacek M, Hol­ler E et al. Heat-shock protein expres­sion in leukemia. Tumor Biol 2011; 32(1): 33– 44. doi: 10.1007/ s13277-010-0088-7.

50. Shi Y, Thomas JO. The transport of proteins into the nucleus requires the 70-kilodalton heta shock protein or its cytosolic cognate. Mol Cell Biol 1992; 12(5): 2186– 2192.

51. Song J, Takeda M, Morimoto RI. Bag1-HSP70 mediates a physiological stress signal­l­ing pathway that regulates Raf-1/ ERK and cell growth. Nat Cell Biol 2001; 3(3): 276– 282.

52. Gotz R, Kramer BW, Camarero G et al. BAG-1 haplo-insuf­ficiency impairs lung tumorigenesis. BMC Cancer 2004; 4: 85– 91.

53. Mjahed H, Girodon F, Fontenay M et al. Heat shock proteins in hematopoietic malignancies. Exp Cell Res 2012; 318(5): 1946– 1958. doi: 10.1016/ j.yexcr.2012.05.012.

54. Cortes JE, Talpaz M, Beran M et al. Philadelphia chromosome-negative chronic myelogenous leukemia with rear­rangement of the breakpoint cluster region. Long-term fol­low-up results. Cancer 1995; 75(2): 464– 470.

55. Deininger MW, Goldman JM, Melo JV. The molecular bio­logy of chronic myeloid leukemia. Blood 2000; 96(10): 3343– 3356.

56. Žáčková M, Moučková D, Lopotová T et al. HSP90 –  a potencial prognostic marker in CML. Blood Cel­ls Mol Dis 2013; 50(3): 184– 189. doi: 10.1016/ j.bcmd.2012.11.002.

57. Reikvam H, Hatfield KJ, Ersvaer E et al. Expres­sion profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly as­sociated with FLT3 mutation status –  consequences and potentials for pharmacological intervention. Br J Haematol 2011; 156(4): 468– 480. doi: 10.1111/ j.1365-2141.2011.08960.x.

58. Yao Q, Nishiuchi R, Kitamura T et al. Human leukemias with mutated FLT3 kinase are synergistical­ly sensitive to FLT3 and HSP90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia 2005; 19(9): 1605– 1612.

59. Tian WL, He F, Fu X et al. High expres­sion of heat shock protein 90 alpha and its significance in human acute leukemia cel­ls. Gene 2014; 542(2): 122– 128. doi: 10.1016/ j.gene.2014.03.046.

60. Klikova K, Stefanikova A, Pilchova I et al. Dif­ferential impact of bortezomib on HL-60 and K562 cel­ls. Gen Phys Biophys 2015; 34(1): 33– 42. doi: 10.4149/ gpb_2014026.

61. Gamer J, Bujard H, Bukau B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 1992; 69(5): 833– 842.

62. Rodriguez F, Arsene-Ploetze F, Rist W et al. Molecular basis for regulation of the heat shock transcription factor sigma 32 by the DnaK and DnaJ chaperones. Mol Cell 2008; 32(3): 347– 358. doi: 10.1016/ j.molcel.2008.09.016.

63. Tyedmers J, Mogk A, Bukau B. Cel­lular strategies for control­l­ing protein aggregation. Nat Rev Mol Cell Biol 2010; 11(11): 777– 788. doi: 10.1038/ nrm2993.

64. Daugaard M, Rohde M, Jaattela M. The heat shock protein 70 family: highly homologous proteins with overlapp­ing and distinct functions. FEBS Lett 2007; 581(19): 3702– 3710.

65. Broadley SA, Hartl FU. The role of molecular chaperones in human misfold­ing diseases. FEBS Lett 2009; 583(16): 2647– 2653. doi: 10.1016/ j.febslet.2009.04.029.

66. Mos­ser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23(16): 2907– 2918.

67. Otvos L, Rogers ME, Consolvo PJ et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000; 39(46): 14150– 14159.

68. Reikvam H, Nepstad I, Sulen A et al. Increased antileukemic ef­fects in human acute myeloid leukemia by combin­ing HSP70 and HSP90 inhibitors. Expert Opin Investig Drugs 2013; 22(5): 551– 563. doi: 10.1517/ 13543784.2013.791280.

69. Yao Q, Nishiuchi R, Li Q et al. FLT3 expres­s­ing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-as­sociated kinases. Clin Cancer Res 2003; 9(12): 4483– 4493.

70. Nim­manapal­li R, O’Bryan E, Bhal­la K. Geldanamycin and its analogue 17-al­lylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and dif­ferentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61(5): 1799– 1804.

71. Ray S, Lu Y, Kaufmann SH et al. Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resis­tance to paclitaxel-induced apoptosis. J Biol Chem 2004; 279(34): 35604– 35615.

72. As­simon V, Gil­lies AT, Rauch JN et al. Hsp70 protein complexes as drug targets. Curr Pharm Des 2013; 19(3): 404– 417.

73. Brodsky JL, Chiosis G. Hsp70 molecular chaperones: emerg­ing roles in human disease and identification of small molecule modulators. Curr Top Med Chem 2006; 6(11): 1215– 1225.

74. Reikvam H, Bren­ner AK, Nepstad I et al. Heat shock protein 70 –  the next chaperone to target in the treatment of human acute myelogenous leukemia? Expert Opin Ther Targets 2014; 18(8): 929– 944. doi: 10.1517/ 14728222.2014.924925.

75. McCon­nell RJ, McAlpine SR. Heat shock proteins 27, 40 and 70 as combinational and dual therapeutic cancer targets. Bioorg Med Chem Lett 2013; 23(7): 1923– 1928. doi: 10.1016/ j.bmcl.2013.02.014.

76. Leu JI, Pimkina J, Frank A et al. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 2009; 36(1): 15– 27. doi: 10.1016/ j.molcel.2009.09.023.

77. Kaiser M, Kuhnl A, Reins J et al. Antileukemic activity of the HSP70 inhibitor pifithrin-μ in acute leukemia. Blood Cancer J 2011; 1(7): 1– 8. doi: 10.1038/ bcj.2011.28.

78. Yang M, Jiang G, Li W et al. Develop­ing aptamer probes for acute myelogenous leukemia detection and surface protein bio­marker discovery. J Hematol Oncol 2014; 7: 5. doi: 10.1186/ 1756-8722-7-5.

79. Stuart RK, Wei A, Lewis ID et al. A multicenter dose-find­ing randomized control­led phase IIb study of the aptamer AS1411 in patients with primary refractory or relapsed AML. J Clin Oncol 2010; 28 (Suppl 15): abstr. TPS279.

80. Sundaram P, Kurniawan H, Byrne EM et al. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2013; 48(1– 2): 259– 271. doi: 10.1016/ j.ejps.2012.10.014.

81. Rerole AL, Gobbo J, De Thonel A et al. Peptides and aptamers target­ing HSP70: a novel approach for anticancer chemotherapy. Cancer Res 2011; 71(2): 484– 495. doi: 10.1158/ 0008-5472.CAN-10-1443.

82. Andersen MH. The target­ing of im­munosuppres­sive mechanisms in hematological malignancies. Leukemia 2014; 28(9): 1784– 1792. doi: 10.1038/ leu.2014.108.

83. Fal­louh H, Mahana W. Antibody to heat shock protein 70 (HSP70) inhibits human T-cell lymphoptropic virus type I (HTLV-I) production by transformed rabbit T-cell lines. Toxins 2012; 4(10): 768– 777. doi: 10.3390/ toxins4100768.

84. Stangl S, Themelis G, Friedrich L et al. Detection of ir­radiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors us­ing Hsp70 Fab fragment. Radiother Oncol 2011; 99(3): 313– 316. doi: 10.1016/ j.radonc.2011.05.051.

85. Braunstein MJ, Scott S­S, Scott CM et al. Antimyeloma ef­fects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101. J Oncol 2011; 2011: 232037. doi: 10.1155/ 2011/ 232037.

86. Gaudio E, Paduano F, Ngankeu A et al. Heat shock protein 70 regulates Tcl1 expres­sion in leukemia and lymphomas. Blood 2013; 121(2): 351– 359. doi: 10.1182/ blood-2012-09-457374.

87. Kirszberg C, Rumjanek VM, Capel­la MA. Methylene blue is more toxic to erythroleukemic cel­ls than to normal peripheral blood mononuclear cel­ls: a pos­sible use in chemotherapy. Cancer Chemother Pharmacol 2005; 56(6): 659– 665.

88. Demand J, Alberti S, Patterson C et al. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase dur­ing chaperone/ proteasome coupling. Curr Biol 2001; 11(20): 1569– 1577.

89. Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002; 2(1): 3– 24.

90. Reikvam H, Ersvaer E, Bruserud O et al. Heat shock protein 90 –  a potential target in the treatment of human acute myelogenous leukemia. Curr Cancer Drug Targets 2009; 9(6): 761– 776.

91. Jhaveri K, Taldone T, Modi S et al. Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta 2012; 1823(3): 742– 755. doi: 10.1016/ j.bbamcr.2011.10.008.

92. Neckers L. Chaperon­ing oncogenes: Hsp90 as a target of geldanamycin. Handb Exp Pharmacol 2006; 172: 259– 277.

93. Supko JG, Hickman RL, Grever MR et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 1995; 36(4): 305– 315.

94. Li Y, Zhang T, Schwartz SJ et al. New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 2009; 12(1– 2): 17– 27. doi: 10.1016/ j.drup.2008.12.002.

95. Ron­nen EA, Kondagunta GV, Ishill N et al. A phase II trial of 17-(Al­lylamino)-17-demethoxygeldanamycin in patients with papil­lary and clear cell renal cell carcinoma. Invest New Drugs 2006; 24(6): 543– 546.

96. Dai C, Whitesell L. HSP90: a ris­ing star on the horizon of anticancer targets. Future Oncol 2005; 1(4): 529– 540.

97. Pacey S, Banerji U, Judson I et al. Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 2006; 172: 331– 358.

98. Lancet JE, Gojo I, Burton M et al. Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 2010; 24(4): 699– 705. doi: 10.1038/ leu.2009.292.

99. Wu YC, Yen WY, Lee TC et al. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis. Toxicol Appl Pharmacol 2009; 236(2): 231– 238. doi: 10.1016/ j.taap.2009.02.003.

100. Didelot C, Lan­neau D, Brunet M et al. Anti-cancer therapeutic approaches based on intracel­lular and extracel­lular heat shock proteins. Curr Med Chem 2007; 14(27): 2839– 2847.

101. Peng C, Brain J, Hu Y et al. Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppres­ses leukemic stem cel­ls. Blood 2007; 110(2): 678– 685.

102. Turjap M, Juřica J, Demlová R. Možný klinický přínos terapeutického monitorování hladin imatinibu v onkologii. Klin Onkol 2015; 28(2): 105– 111. doi: 10.14735/ amko2015105.

103. Barnes DJ, De S, van Hensbergen P et al. Dif­ferent target range and cytotoxic specificity of adaphostin and 17-al­lylamino-17-demethoxygeldanamycin in imatinib-resistant and sensitive cell lines. Leukemia 2007; 21(3): 421– 426.

104. Marcu MG, Chadli A, Bouhouche I et al. The heat shock protein 90 antagonist novobio­cin interacts with a previously unrecognized ATP-bind­ing domain in the carboxyl terminus of the chaperone. J Biol Chem 2000; 275(47): 37181– 37186.

105. Marcu MG, Schulte TW, Neckers L. Novobio­cin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 2000; 92(3): 242– 248.

106. Shelton SN, Shawgo ME, Matthews SB et al. KU135, a novel novobio­cin-derived C-terminal inhibitor of the 90-kDa heat shock protein, exerts potent antiproliferative ef­fects in human leukemic cel­ls. Mol Pharmacol 2009; 76(6): 1314– 1322. doi: 10.1124/ mol.109.058545.

107. Delmotte P, Delmotte-Plaque J. A new antifungal substance of fungal origin. Nature 1953; 171(4347): 344.

108. Soga S, Shiotsu Y, Akinaga S et al. Development of radicicol analogues. Curr Cancer Drug Targets 2003; 3(5): 359– 369.

109. Shiotsu Y, Neckers LM, Wortman I et al. Novel oxime derivatives of radicicol induce erythroid dif­ferentiation as­sociated with preferential G(1) phase accumulation against chronic myelogenous leukemia cel­ls through destabilization of Bcr-Abl with Hsp90 complex. Blood 2000; 96: 2284– 2291.

110. Chiosis G, Timaul MN, Lucas B et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth ar­rest and dif­ferentiation of breast cancer cel­ls. Chem Biol 2001; 8(3): 289– 299.

111. Boll B, Eltaib F, Reiners KS et al. Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kap­paB and sensitizes Hodgkin’s lymphoma cel­ls for natural kil­ler cel­l-mediated cytotoxicity. Clin Cancer Res 2009; 15(16): 5108– 5116. doi: 10.1158/ 1078-0432.CCR-09-0213.

112. Elfiky A, Saif MW, Beeram M et al. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: phase I experience. J Clin Oncol 2008; 26: abstr. 2503.

113. Plescia J, Salz W, Xia F et al. Rational design of shepherdin, a novel anticancer agent. Cancer Cell 2005; 7(5): 457– 468.

114. Gyurkocza B, Plescia J, Raskett CM et al. Antileukemic activity of shepherdin and molecular diversity of HSP90 inhibitors. J Natl Cancer Inst 2006; 98(15): 1068– 1077.

115. Kaufmann SH, Karp JE, Litzow MR et al. Phase I and pharmacological study of cytarabine and tanespimycin in relapsed and refractory acute leukemia. Haematologica 2011; 96(11): 1619– 1626. doi: 10.3324/ haematol.2011.049551.

116. Siegel D, Jagan­nath S, Vesole HD et al. A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma 2011; 52(12): 2308– 2315. doi: 10.3109/ 10428194.2011.600481.

117. Richardson PG, Mitsiades CS, Laubach JP et al. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol 2011; 152(4): 367– 379. doi: 10.1111/ j.1365-2141.2010.08360.x.

118. George P, Bali P, An­navarapu S et al. Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cel­ls and AML cel­ls with activat­ing mutation of FLT-3. Blood 2005; 105(4): 1768– 1776.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie
Článek Editorial

Článek vyšel v časopise

Klinická onkologie

Číslo 1

2016 Číslo 1

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Zánětlivá bolest zad a axiální spondylartritida – Diagnostika a referenční strategie
nový kurz
Autoři: MUDr. Monika Gregová, Ph.D., MUDr. Kristýna Bubová

Inhibitory karboanhydrázy v léčbě glaukomu
Autoři: as. MUDr. Petr Výborný, CSc., FEBO

Příběh jedlé sody
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se