Prečo sú mitochondrie vhodné ciele pre liečbu rakoviny


Autoři: Z. Tatarkova;  S. Kuka;  M. Petras;  P. Racay;  J. Lehotský;  D. Dobrota;  P. Kaplán
Působiště autorů: Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
Vyšlo v časopise: Klin Onkol 2012; 25(6): 421-426
Kategorie: Přehledy

Táto práca bola podporená projektom „Centrum excelentnosti pre výskum v personalizovanej terapii“ (CEVYPET), ITMS: 2622012053, spolufinancovaným zo zdrojov EÚ a Európskeho fondu regionálneho rozvoja, a grantom VEGA 1/0028/11 Ministerstva školstva a vedy Slovenskej republiky.

Obdrženo: 2. 12. 2011
Přijato: 31. 5. 2012

Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.

Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů.

Obdrženo: 2. 12. 2011
Přijato: 31. 5. 2012

Souhrn

Nové trendy v liečbe rakoviny sa spájajú s rozvojom presne cielených terapeutík, s účinkom na rakovinové bunky a zameraním na špecifické biologické dráhy. Úloha onkoproteínov a tumor-supresorových proteínov v proliferačnej signalizácii, regulácii bunkového cyklu a pozmenenej adhézii je už dobre preskúmaná. Chemické látky, vírusy a žiarenie sú tiež všeobecne prijímanými faktormi, ktoré vyvolávajú mutácie v génoch kódujúcich proteíny súvisiace s tvorbou rakoviny. Nedávne experimenty ukázali, že existujú dva nové kľúčové faktory pôsobiace na proliferujúce bunky – hypoxia a nedostatok glukózy. Tieto môžu iniciovať a podporovať proces malígnej transformácie v malom množstve buniek, ktorým sa podarilo uniknúť bunkovému starnutiu. Neregulovaná bunková proliferácia vedie k tvorbe bunkovej masy presahujúcej svoje rezervy, čo znižuje množstvo kyslíka a živín. Vzniknutý stav hypoxie iniciuje ďalšie kľúčové úpravy, ktoré umožňujú prežitie nádorových buniek. Proces apoptózy je potlačený a metabolizmus glukózy pozmenený. Nedávne experimenty naznačili, že vyčerpanie zásob kyslíka stimuluje mitochondrie, aby spracovávali väčšie množstvá reaktívnych foriem kyslíka (ROS). Aktivujú sa tak signálne dráhy, ako je hypoxiu-indukujúci faktor 1, ktoré podporujú prežívanie nádorových buniek a rast nádorov. Mitochondrie sú čoraz častejšie považované za kľúčové organely podieľajúce sa na chemoterapii, a preto je dôležité nájsť spôsob ako aktivovať apoptózu v mitochondriách za podmienok hypoxie, určiť vzťah medzi mitochondria­­mi, ROS signalizáciou a procesmi aktivujúcimi prežívanie buniek. Každé nové zistenie môže otvoriť cestu pre pochopenie a odhalenie podstaty rakoviny a následné vytvorenie na mieru šitej terapie.

Kľúčové slová:
mitochondria – bunková smrť – energetický metabolizmus – bunková transformácia


Zdroje

1. Passos JF, Simillion C, Hallinan J et al. Cellular senescence: unravelling complexity. Age 2009; 31(4): 353–363.

2. Ralph SJ, Rodríguez-Enríquez S, Neuzil J et al. The causes of cancer revisited: mitochondrial malignancy and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31(2): 145–170.

3. Muller FL, Lustgarten MS, Jang Y et al. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43(4): 477–503.

4. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005; 120(4): 483–495.

5. Fleury C, Mignotte B, Vaysière JL. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 2002; 84(2–3): 131–141.

6. Le Bras M, Clément MV, Pervaiz S et al. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 2005; 20(1): 205–219.

7. Flores I, Blasco MA. The role of telomeres and telomerase in stem cell aging. FEBS Lett 2010; 584(17): 3826–3830.

8. Voghel G, Thorin-Trescases N, Mamarbachi AM et al. Endogenous oxidative stress prevents telomerase-dependent immortalization of human endothelial cells. Mech Ageing Dev 2010; 131(5): 354–363.

9. Houben JM, Moonen HJ, van Schooten FJ et al. Telomere length assessment: biomarker of chronic oxidative stress? Free Radic Biol Med 2008; 44(3): 235–246.

10. Klimova TA, Bell EL, Shroff EH et al. Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J 2009; 23(3): 783–794.

11. Aykin-Burns N, Ahmad IM, Zhu Y et al. Increased levels of superoxide and hydrogen peroxide mediate the differential susceptibility of cancer cells vs. normal cells to glucose deprivation. Biochem J 2009; 418(1): 29–37.

12. López-Lázaro M. A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med 2010; 16(3–4): 144–153.

13. Moreno-Sánchez R, Rodríguez-Enríguez S, Marín-Hernández A et al. Energy metabolism in tumor cells. FEBS J 2007; 274(6): 1393–1418.

14. Rodríguez-Enríguez S, Torres-Márquez ME, Moreno-Sánchez R. Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch Biochem Biophys 2000; 375(1): 21–30.

15. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4(11): 891–899.

16. Dang CV, Lewis BC, Dolde C et al. Oncogenes in tumor metabolism, tumorigenesis and apoptosis. J Bioenerg Biomembr 1997; 29(4): 345–354.

17. Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA et al. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 2006; 273(9): 1975–1988.

18. Semenza GL. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 2007; 12(19–20): 853–859.

19. Thomas DD, Espey MG, Ridnour LA et al. Hypoxic inducible factor 1, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentra­tions of nitric oxide. Proc Natl Acad Sci USA 2004; 101(24): 8894–8899.

20. Guppy M. The hypoxic core: a possible answer to the cancer paradox. Biochem Biophys Res Commun 2002; 299(4): 676–680.

21. Robey IF, Lien AD, Welsh SJ et al. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 2005; 7(4): 324–330.

22. Simon MC. Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab 2006; 3(3): 150–151.

23. Eskey CJ, Koretsky AP, Domach MM et al. Role of oxygen versus glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR. Proc Natl Acad Sci USA 1993; 90(7): 2646–2650.

24. Thews O, Kelleher DK, Lecher B et al. Blood flow, oxygenation, metabolic and energetic status in different clonal subpopulations of a rat rhabdomyosarcoma. Int J Oncol 1998; 13(2): 205–211.

25. Rofstad EK, Halsør EF. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 2000; 60(17): 4932–4938.

26. Schroeder T, Yuan H, Viglianti BL et al. Spatial heterogeneity and oxygen dependence of glucose consumption in R3230Ac and fibrosarcomas of the Fischer 344 rat. Cancer Res 2005; 65(12): 5163–5171.

27. Sutherland RM. Tumor hypoxia and gene expression – implications for malignant progression and therapy. Acta Oncol 1998; 37(6): 567–574.

28. Matoba S, Kang JG, Patino WD et al. p53 regulates mitochondrial respiration. Science 2006; 312(5780): 1650–1653.

29. Stubbs M, Bashford CL, Griffith JR. Understanding the tumor metabolic phenotype in the genomic era. Curr Mol Med 2003; 3(1): 49–59.

30. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 1978; 22: 190–274.

31. LaNoue KF, Hemington JG, Ohnishi T et al. Defects in anion and electron transport in Morris hepatoma mitochondria. In: Hormone and Cancer. Mc Kerns KW (ed). New York: Academic Press 1974: 131–167.

32. Lichtor T, Dohrmann GJ. Oxidative metabolism and glycolysis in benign brain tumors. J Neurosurg 1987; 67(3): 336–340.

33. Zhu XL, Guppy M. Cancer metabolism: facts, fantasy and fiction. Biochem Biophys Res Commun 2004; 313(3): 459–465.

34. Griguer CE, Oliva CR, Gillespie GY. Glucose metabolism heterogeneity in human and mouse malignant glio­­ma cell lines. J Neurooncol 2005; 74(2): 123–133.

35. Seyfried TN, Mukherjee P. Targeting energy metabolism in brain cancer: review and hypothesis. Nutr Metab 2005; 2: 30.

36. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70.

37. Zitvogel L, Apetoh L, Ghiringhelli F et al. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008; 8(1): 59–73.

38. Morselli E, Galluzzi L, Kepp O et al. Nutlin kills cancer cells via mitochondrial p53. Cell Cycle 2009; 8(11): 1647–1648.

39. Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 2008; 18(4): 165–173.

40. Galluzi L, Morselli E, Kepp O et al. Mitochondrial gateways to cancer. Mol Aspects Med 2010; 31(1): 1–20.

41. Fantin VR, Berardi MJ, Scorrano L et al. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2002; 2(1): 29–42.

42. Mason AR, Drummond MF. Public funding of new cancer drugs: Is NICE getting nastier? Eur J Cancer 2008; 45(7): 1188–1192.

43. Decaudin D, Castedo M, Nemati F et al. Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res 2002; 62(5): 1388–1393.

44. Toogood PL. Mitochondrial drugs. Curr Opin Chem Biol 2008; 12(4): 457–463.

45. Garattini R, Gianni M, Terao M. Retinoid related molecules an emerging class of apoptotic agents with promising therapeutic potential in oncology: pharmacological activity and mechanisms of action. Curr Pharm Des 2004; 10(4): 433–448.

46. Kang L, Wang ZY. Breast cancer cell growth inhibition by phenethyl isothiocyanate is associated with down-regulation of oestrogen receptor-α36. J Cell Mol Med 2010; 14(6B): 1485–1493.

47. Moon YJ, Brazeau DA, Morris ME. Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells. Evid Based Complement Alternat Med 2011; 2011: 1–8.

48. Wang XH, Cavell BE, Syed Alwi SS et al. Inhibition of hypoxia inducible factor by phenethyl isothiocyanate. Bio­chem Pharmacol 2009; 78(3): 261–272.

49. Yuan JM. Masonic Cancer Center at University of Minnesota. National Cancer Institute at the National Institutes of Health. Available from: http://cancer.gov/clinica­ltrials/UMN-2007NT127.

50. Goldin J. Working the program. Moving through cancer: strength and fitness training improves outlook for cancer patients. Rehab Manag 2008; 134(2): 358–367.

51. Müller M, Siems W, Buttgereit F et al. Quantification of ATP-producing and consuming processes of Ehrlich ascites tumour cells. Eur J Biochem 1986; 161(3): 701–705.

52. Jaroszewski JW, Kaplan O, Cohen JS. Action of gossypol and rhodamine 123 on wild-type and multidrug-resistant MCF-7 human breast cancer cells: 31P nuclear magnetic resonance and toxicity studies. Cancer Res 1990; 50(21): 6936–6943.

53. Liu G, Kelly WK, Wilding G et al. An open-label, multicenter, phase I/II study of single-agent AT 101 in men with castrate-resistant prostate cancer. Clin Cancer Res 2009; 15(9): 3172–3176.

54. Liu H, Hu YP, Savaraj N et al. Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 2001; 40(18): 5542–5547.

55. Simons AL, Ahmad IM, Mattson DM et al. 2-Deoxy-D-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res 2007; 67(7): 3364–3370.

56. Sweet S, Singh G. Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints. Cancer Res 1995; 55(22): 5164–5167.

57. Armstrong JS, Hornung B, Lecane P et al. Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW. Biochem Biophys Res Commun 2001; 289(5): 973–978.

58. Barrientos A, Moraes CT. Titrating the effects of complex I mitochondrial impairment in the cell physiology. J Biol Chem 1999; 274(23): 16188–16197.

59. Biasutto L, Dong LF, Zoratti M et al. Mitochondrially targeted anti-cancer agents. Mitochondrion 2010; 10(6): 670–681.

60. Rohlena J, Dong LF, Ralph SJ et al. Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid Redox Signal 2011; 15(12): 2951–2974.

61. Dong LF, Jameson VJ, Tilly D et al. Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 2011; 286(5): 3717–3728.

62. Ralph SJ, Moreno-Sánchez R, Neuzil J et al. Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 2011; 28(11): 2695–2730.

63. Parkin DM, Bray F, Ferlay J et al. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55(2): 74–108.

64. Jemal A, Siegel R, Ward E et al. Cancer statistics, 2009. CA Cancer J Clin 2009; 59(4): 225–249.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 6

2012 Číslo 6

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
nový kurz
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Léčba bolesti v ordinaci praktického lékaře
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se