Placental insufficiency and late-onset growth restriction in fetuses appropriate for gestational age
Authors:
Luděk Kostka 1
; Marta Ježová 2; Zuzana Mikulenková 1
; Anna Jouzová 1
; Lukáš Hruban 1,3
Authors place of work:
Gynekologicko-porodnická klinika LF MU a FN Brno
1; Ústav patologie, LF MU a FN Brno
2; Ústav zdravotních věd, MU Brno
3
Published in the journal:
Ceska Gynekol 2025; 90(5): 398-406
Category:
Přehledová práce
doi:
https://doi.org/10.48095/cccg2025398
Summary
Fetal growth restriction is a condition in which the fetus fails to reach its genetically determined growth potential, most often as a result of impaired placental function. The late-onset form, which develops after 32 weeks of gestation, poses a significant diagnostic challenge due to its subtle clinical and sonographic manifestations. Placental insufficiency is usually associated with pregnancies that meet the established diagnostic criteria for fetal growth restriction. However, there is increasing evidence to suggest that even fetuses with an estimated weight appropriate for gestational age may be affected by a subclinical form of this condition. Typical features of advanced placental dysfunction include abnormal Doppler flow patterns, a slowed fetal growth trajectory, altered levels of maternal serum biomarkers, and specific histopathological findings in the placenta. Despite advances in prenatal diagnostics, there is still no reliable tool capable of identifying pregnancies complicated by placental insufficiency in a timely manner, especially in cases without overt fetal growth deviation. This diagnostic gap limits our ability to identify fetuses at increased risk of adverse perinatal outcomes.
Keywords:
doppler ultrasound – late-onset fetal growth restriction – placental insufficiency – biochemical markers – placental histopathology
Zdroje
1. Gordijn SJ, Beune IM, Thilaganathan B et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016; 48 (3): 333–339. doi: 10.1002/uog.15884.
2. Lackman F, Capewell V, Richardson B et al. The risks of spontaneous preterm delivery and perinatal mortality in relation to size at birth according to fetal versus neonatal growth standards. Am J Obstet Gynecol 2001; 184 (5): 946–953. doi: 10.1067/mob.2001.111719.
3. Brosens I, Pijnenborg R, Vercruysse L et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol 2011; 204 (3): 193–201. doi: 10.1016/j.ajog.2010.08.009.
4. Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131 : 66–77. doi: 10.1016/j.semcdb.2022.03.039.
5. McIntire DD, Bloom SL, Casey BM et al. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 1999; 340 (16): 1234–1238. doi: 10.1056/NEJM 199904223401603.
6. Pallotto EK, Kilbride HW. Perinatal outcome and later implications of intrauterine growth restriction. Clin Obstet Gynecol 2006; 49 (2): 257–269. doi: 10.1097/00003081-200606000-00008.
7. Trudell AS, Cahill AG, Tuuli MG et al. Risk of stillbirth after 37 weeks in pregnancies complicated by small-for-gestational-age fetuses. Am J Obstet Gynecol 2013; 208 (5): 376.e1–376.e7. doi: 10.1016/j.ajog.2013.02.030.
8. Baschat AA, Viscardi RM, Hussey-Gardner B et al. Infant neurodevelopment following fetal growth restriction: relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol 2009; 33 (1): 44–50. doi: 10.1002/uog.6286.
9. Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol 2006; 49 (2): 270–283. doi: 10.1097/00003081-2006 06000-00009.
10. Katanoda K, Noda M, Goto A et al. Impact of birth weight on adult-onset diabetes mellitus in relation to current body mass index: the Japan Nurses’ Health Study. J Epidemiol 2017; 27 (9): 428–434. doi: 10.1016/j.je.2016.08.016.
11. Prior T, Mullins E, Bennett P et al. Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: a prospective observational study. Am J Obstet Gynecol 2013; 208 (2): 124.e1–124.e6. doi: 10.1016/j.ajog.2012.11.016.
12. Morales-Roselló J, Khalil A, Morlando M et al. Poor neonatal acid-base status in term fetuses with low cerebroplacental ratio. Ultrasound Obstet Gynecol 2015; 45 (2): 156–161. doi: 10.1002/uog.14647.
13. Bakalis S, Akolekar R, Gallo DM et al. Umbilical and fetal middle cerebral artery Doppler at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015; 45 (4): 409–420. doi: 10.1002/uog.14822.
14. Kennedy LM, Tong S, Robinson AJ et al. Reduced growth velocity from the mid-trimester is associated with placental insufficiency in fetuses born at a normal birthweight. BMC Med 2020; 18 (1): 395. doi: 10.1186/s12916-020-01869-3.
15. Bardien N, Whitehead CL, Tong S et al. Placental insufficiency in fetuses that slow in growth but are born appropriate for gestational age: a prospective longitudinal study. PLoS One 2016; 11 (1): e0142788. doi: 10.1371/journal.pone.0142788.
16. MacDonald TM, Hui L, Tong S et al. Reduced growth velocity across the third trimester is associated with placental insufficiency in fetuses born at a normal birthweight: a prospective cohort study. BMC Med 2017; 15 (1): 164. doi: 10.1186/s12916-017-0928-z.
17. Hendrix ML, Bons JA, Alers NO et al. Maternal vascular malformation in the placenta is an indicator for fetal growth restriction irrespective of neonatal birthweight. Placenta 2019; 87 : 8–15. doi: 10.1016/j.placenta.2019.09.003.
18. Morris RK, Johnstone E, Lees C et al. Investigation and care of a small-for-gestational-age fetus and a growth restricted fetus (green‐top guideline no. 31). BJOG 2024; 131 (9): e31–e80. doi: 10.1111/1471-0528.17814.
19. Lees CC, Stampalija T, Baschat AA et al. ISUOG Practice Guidelines: diagnosis and management of small‐for‐gestational‐age fetus and fetal growth restriction. Ultrasound Obstet Gynecol 2020; 56 (2): 298–312. doi: 10.1002/uog.22134.
20. Vasak B, Koenen SV, Koster MP et al. Human fetal growth is constrained below optimal for perinatal survival. Ultrasound Obstet Gynecol 2015; 45 (2): 162–167. doi: 10.1002/uog.14644.
21. Damhuis SE, Kamphof HD, Ravelli AC et al. Perinatal mortality rate and adverse perinatal outcomes presumably attributable to placental dysfunction in (near) term gestation: a nationwide 5-year cohort study. PLoS One 2023; 18 (5): e0285096. doi: 10.1371/journal.pone.0285096.
22. Leon-Martinez D, Lundsberg LS, Culhane J et al. Fetal growth restriction and small for gestational age as predictors of neonatal morbidity: which growth nomogram to use? Am J Obstet Gynecol 2023; 229 (6): 678.e1–678.e16. doi: 10.1016/j.ajog.2023.06.035.
23. Roma E, Arnau A, Berdala R et al. Ultrasound screening for fetal growth restriction at 36 vs 32 weeks’ gestation: a randomized trial (ROUTE). Ultrasound Obstet Gynecol 2015; 46 (4): 391–397. doi: 10.1002/uog.14915.
24. Fadigas C, Saiid Y, Gonzalez R et al. Prediction of small-for-gestational-age neonates: screening by fetal biometry at 35-37 weeks. Ultrasound Obstet Gynecol 2015; 45 (5): 559–565. doi: 10.1002/uog.14816.
25. Bakalis S, Silva M, Akolekar R et al. Prediction of small-for-gestational-age neonates: screening by fetal biometry at 30–34 weeks. Ultrasound Obstet Gynecol 2015; 45 (5): 551–558. doi: 10.1002/uog.14771.
26. Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol 2005; 25 (1): 80–89. doi: 10.1002/uog.1751.
27. Milner J, Arezina J. The accuracy of ultrasound estimation of fetal weight in comparison to birth weight: a systematic review. Ultrasound 2018; 26 (1): 32–41. doi: 10.1177/1742271X17732807.
28. Poon LC, Shennan A, Hyett JA et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet 2019; 145 (Suppl 1): 1–33. doi: 10.1002/ijgo.12802.
29. Zeisler H, Llurba E, Chantraine F et al. Predictive value of the sFlt-1: PlGF ratio in women with suspected preeclampsia. N Engl J Med 2016; 374 (1): 13–22. doi: 10.1056/NEJMoa1414838.
30. Rolnik DL, Wright D, Poon LC et al. ASPRE trial: performance of screening for preterm pre‐eclampsia. Ultrasound Obstet Gynecol 2017; 50 (4): 492–495. doi: 10.1002/uog.18816.
31. Gaccioli F, Aye IL, Sovio U et al. Screening for fetal growth restriction using fetal biometry combined with maternal biomarkers. Am J Obstet Gynecol 2018; 218 (2S): S725–S737. doi: 10.1016/j.ajog.2017.12.002.
32. Hong J, Kumar S. Circulating biomarkers associated with placental dysfunction and their utility for predicting fetal growth restriction. Clin Sci (Lond) 2023; 137 (8): 579–595. doi: 10.1042/CS20220300.
33. Chen W, Wei Q, Liang Q et al. Diagnostic capacity of sFlt-1/PlGF ratio in fetal growth restriction: a systematic review and meta-analysis. Placenta 2022; 127 : 37–42. doi: 10.1016/j.placenta.2022.07.020.
34. Farina A, Cavoretto PI, Syngelaki A et al. Soluble fms-like tyrosine kinase-1/placental growth factor ratio at 36 weeks’ gestation: association with spontaneous onset of labor and intrapartum fetal compromise in low-risk pregnancies. Am J Obstet Gynecol 2024; 232 (4): 392.e1–392.e14. doi: 10.1016/j.ajog.2024.08.025.
35. Kaitu’u-Lino TJ, MacDonald TM, Cannon P et al. Circulating SPINT1 is a biomarker of pregnancies with poor placental function and fetal growth restriction. Nat Commun 2020; 11 (1): 2411. doi: 10.1038/s41467-020-16346-x.
36. MacDonald TM, Walker SP, Hiscock R et al. Circulating Delta-like homolog 1 (DLK1) at 36 weeks is correlated with birthweight and is of placental origin. Placenta 2020; 91 : 24–30. doi: 10.1016/j.placenta.2020.01.003.
37. Parry S, Carper BA, Grobman WA et al. Placental protein levels in maternal serum are associated with adverse pregnancy outcomes in nulliparous patients. Am J Obstet Gynecol 2022; 227 (3): 497.e1–497.e13. Doi: 10.1016/ j.ajog.2022.03.064.
38. Heazell AE, Hayes DJ, Whitworth M et al. Biochemical tests of placental function versus ultrasound assessment of fetal size for stillbirth and small-for-gestational-age infants. Cochrane Database Syst Rev 2019; 5 (5): CD012245. doi: 10.1002/14651858.CD012245.pub2.
39. Khalil A, Morales-Roselló J, Townsend R e al. Value of third-trimester cerebroplacental ratio and uterine artery Doppler indices as predictors of stillbirth and perinatal loss. Ultrasound Obstet Gynecol 2016; 47 (1): 74–80. doi: 10.1002/uog.15729.
40. Bligh LN, Al Solai A, Greer RM et al. Diagnostic performance of cerebroplacental ratio thresholds at term for prediction of low birthweight and adverse intrapartum and neonatal outcomes in a term, low-risk population. Fetal Diagn Ther 2018; 43 (3): 191–198. doi: 10.1159/000477932.
41. Akolekar R, Syngelaki A, Gallo DM et al. Umbilical and fetal middle cerebral artery Doppler at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015; 46 (1): 82–92. doi: 10.1002/uog.14842.
42. Figueras F, Gratacos E, Rial M et al. Revealed versus concealed criteria for placental insufficiency in an unselected obstetric population in late pregnancy (RATIO37): randomised controlled trial study protocol. BMJ Open 2017; 7 (6): e014835. doi: 10.1136/bmjopen-2016 - 014835.
43. Spinillo A, Cesari S, Bariselli S et al. Placental lesions associated with oligohydramnios in fetal growth restricted (FGR) pregnancies. Placenta 2015; 36 (5): 538–544. doi: 10.1016/ j.placenta.2015.02.007.
44. Miremberg H, Grinstein E, Herman HG et al. The association between isolated oligohydramnios at term and placental pathology in correlation with pregnancy outcomes. Placenta 2020; 90 : 37–41. doi: 10.1016/j.placenta.2019.12.004.
45. Chauhan SP, Sanderson M, Hendrix NW et al. Perinatal outcome and amniotic fluid index in the antepartum and intrapartum periods: a meta-analysis. Am J Obstet Gynecol 1999; 181 (6): 1473–1478. doi: 10.1016/S0002-93 78 (99) 70393-5.
46. Khong TY, Mooney EE, Ariel I et al. Sampling and definitions of placental lesions: Amsterdam placental workshop group consensus statement. Arch Pathol Lab Med 2016; 140 (7): 698–713. doi: 10.5858/arpa.2015 - 0225-CC.
47. Redline RW, Ravishankar S, Bagby CM et al. Four major patterns of placental injury: a stepwise guide for understanding and implementing the 2016 Amsterdam consensus. Modern Pathol 2021; 34 (6): 1074–1092. doi: 10.1038/s41379-021-00747-4.
48. Gluck O, Schreiber L, Marciano A et al. Pregnancy outcome and placental pathology in small for gestational age neonates in relation to the severity of their growth restriction. J Matern Fetal Neonatal Med 2019; 32 (9): 1468–1473. doi: 10.1080/14767058.2017.1408070.
49. Zur RL, Kingdom JC, Parks WT et al. The placental basis of fetal growth restriction. Obstet Gynecol Clin North Am 2020; 47 (1): 81–98. doi: 10.1016/j.ogc.2019.10.008.
50. Ernst LM. Maternal vascular malperfusion of the placental bed. APMIS 2018; 126 (7): 551–560. doi: 10.1111/apm.12833.
51. Redline RW, Roberts DJ, Parast MM et al. Placental pathology is necessary to understand common pregnancy complications and achieve an improved taxonomy of obstetrical disease. Am J Obstet Gynecol 2023; 228 (2): 187–202. doi: 10.1016/j.ajog.2022.08.010.
52. Redline RW. Placental pathology: a systematic approach with clinical correlations. Placenta 2008; 29 (Suppl A): S86–S91. doi: 10.1016/j.placenta.2007.09.003.
53. Burkhardt T, Schäffer L, Schneider C et al. Reference values for the weight of freshly delivered term placentas and for placental weight-birth weight ratios. Eur J Obstet Gynecol Reprod Biol 2006; 128 (1–2): 248–252. doi: 10.1016/ j.ejogrb.2005.10.032.
54. Vachon-Marceau C, Demers S, Markey S et al. First-trimester placental thickness and the risk of preeclampsia or SGA. Placenta 2017; 57 : 123–128. doi: 10.1016/j.placenta.2017.06.016.
55. Effendi M, Demers S, Giguère Y et al. Association between first-trimester placental volume and birth weight. Placenta 2014; 35 (2): 99–102. doi: 10.1016/j.placenta.2013.11.015.
56. Plasencia W, Akolekar R, Dagklis T et al. Placental volume at 11–13 weeks’ gestation in the prediction of birth weight percentile. Fetal Diagn Ther 2011; 30 (1): 23–28. doi: 10.1159/000324318.
57. Schwartz N, Sammel MD, Leite R et al. First--trimester placental ultrasound and maternal serum markers as predictors of small-for-gestational-age infants. Am J Obstet Gynecol 2014; 211 (3): 253.e1–253.e8. doi: 10.1016/j.ajog.2014.02.033.
58. Hafner E, Metzenbauer M, Höfinger D et al. Comparison between three-dimensional placental volume at 12 weeks and uterine artery impedance/notching at 22 weeks in screening for pregnancy-induced hypertension, pre-eclampsia and fetal growth restriction in a low-risk population. Ultrasound Obstet Gynecol 2006; 27 (6): 652–657. doi: 10.1002/ uog.2641.
59. Hutter J, Al-Wakeel A, Kyriakopoulou V et al. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta 2023; 139 : 25–33. doi: 10.1016/j.placenta.2023.05.014.
60. Al Darwish FM, Coolen BF, van Kammen CM et al. Assessment of feto-placental oxygenation and perfusion in a rat model of placental insufficiency using T2* mapping and 3D dynamic contrast-enhanced MRI. Placenta 2024; 151 : 19–25. doi: 10.1016/j.placenta.2024.04.008.
61. Aughwane R, Ingram E, Johnstone ED et al. Placental MRI and its application to fetal intervention. Prenat Diagn 2020; 40 (1): 38–48. doi: 10.1002/pd.5526.
62. Mydtskov ND, Sinding M, Aarøe KK et al. Placental volume, thickness and transverse relaxation time (T2*) estimated by magnetic resonance imaging in relation to small for gestational age at birth. Eur J Obstet Gynecol Reprod Biol 2023; 282 : 72–76. doi: 10.1016/ j.ejogrb.2023.01.013.
63. Hata T, Kanenishi K, Yamamoto K et al. Microvascular imaging of thick placenta with fetal growth restriction. Ultrasound Obstet Gynecol 2018; 51 (6): 837–839. doi: 10.1002/ uog.18837.
64. García-Jiménez R, Arroyo E, Borrero C et al. Evaluation of placental micro-vascularization by superb micro-vascular imaging doppler in cases of intra-uterine growth restriction: a first step. Ultrasound Med Biol 2021; 47 (6): 1631–1636. doi: 10.1016/j.ultrasmedbio.2021.01.029.
65. Garcia-Jimenez R, Borrero González C, García-Mejido JA et al. Assessment of late on-set fetal growth restriction using SMI (superb microvascular imaging) Doppler. Quant Imaging Med Surg 2023; 13 (7): 4305–4312. doi: 10.21037/qims-22-807.
66. Esposito G, Pini N, Tagliaferri S et al. An integrated approach based on advanced CTG parameters and Doppler measurements for late growth restriction management. BMC Pregnancy Childbirth 2021; 21 (1): 775. doi: 10.1186/s12884-021-04235-0.
67. Allotey J, Archer L, Coomar D et al. Development and validation of prediction models for fetal growth restriction and birthweight: an individual participant data meta-analysis. Health Technol Assess 2024; 28 (47): 1–119. doi: 10.3310/DABW4814.
68. Redline RW, Vik T, Heerema-McKenney A et al. Interobserver reliability for identifying specific patterns of placental injury as defined by the Amsterdam classification. Arch Pathol Lab Med 2022; 146 (3): 372–378. doi: 10.5858/arpa.2020-0753-OA.
69. Alturkustani M, Alomran A, Al-Thomali HH. Enhancing the diagnostic accuracy of placental pathology by using the Amsterdam consensus criteria. Cureus 2024; 16 (8): e66153. doi: 10.7759/cureus.66153.
ORCID autorů
L. Kostka 0009-0001-6553-4471
Z. Mikulenková 0009-0004-9509-6777
A. Jouzová 0000-0002-1229-4283
L. Hruban 0000-0001-8594-2678
Doručeno/Submitted: 22. 6. 2025
Přijato/Accepted: 26. 6. 2025
doc. MUDr. Lukáš Hruban, PhD., MBA
Gynekologicko-porodnická klinika
LF MU a FN Brno
Obilní Trh 526/11
602 00 Brno
hruban.lukas@fnbrno.cz
Štítky
Dětská gynekologie Gynekologie a porodnictví Reprodukční medicínaČlánek vyšel v časopise
Česká gynekologie
2025 Číslo 5
- Horní limit denní dávky vitaminu D: Jaké množství je ještě bezpečné?
- Tirzepatid – nová éra v léčbě nadváhy a obezity
- Moje zkušenosti s Magnosolvem podávaným pacientům jako profylaxe migrény a u pacientů s diagnostikovanou spazmofilní tetanií i při normomagnezémii - MUDr. Dana Pecharová, neurolog
- Isoprinosin je bezpečný a účinný v léčbě pacientů s akutní respirační virovou infekcí
- Tirzepatid v léčbě obezity a nadváhy v praxi
Nejčtenější v tomto čísle
- Laparoskopická léčba torze vaječníku ve 26. týdnu gestace
- Vaginální fisting a riziko anogenitálního poranění
- Placentární insuficience a pozdní růstová restrikce ve skupině plodů s adekvátní velikostí pro dané gestační stáří
- Vliv neuronů produkujících kisspeptin, neurokinin a dynorfin na lidskou reprodukci