Terapeutická hypotermie po srdeční zástavě: proč a na jak dlouho? –  editorial


Autoři: doc. MUDr. Jan Bělohlávek, Ph.D. ;  O. Šmíd
Působiště autorů: II. interní klinika kardiologie a angiologie 1. lékařské fakulty UK a VFN Praha, přednosta prof. MU Dr. Aleš Linhart, DrSc.
Vyšlo v časopise: Vnitř Lék 2011; 57(1): 23-26
Kategorie: Editorialy

Sýkora R et al. Terapeutická hypotermie po srdeční zástavě na 12 hodin: Karlovy Vary 2006–2009. Vnitř Lék 2011; 57(1): 72–77.

Srdeční zástava je významný celospolečenský problém. Cílem péče o nemocné po srdeční zástavě je dosažení kvalitního přežití, tedy zabránění nevratným orgánovým poškozením, především poškození mozkových funkcí. Komplex péče o pacienta se srdeční zástavou zahrnuje základní neodkladnou resuscitaci, rozšířenou resuscitaci a poresuscitační péči. Každá z uvedených fází je pro další osud pacienta stejně klíčová a zaváhání či chyba v péči o resuscitovaného pacienta nebo pacienta s úspěšným obnovením oběhu může mít bezprostřední důsledky na jeho osud. Často i přes optimální provedení všech jmenovaných postupů je prognóza pacientů stižených ná­hlou zástavou oběhu nepříznivá (z pacientů resuscitovaných záchrannou službou přežívá 5–15 %, resp. 8–40 % z těch, u kterých je prvním zachyceným rytmem komorová fibrilace). Např. v Praze v roce 2008 bylo záchrannou službou resuscitováno 493 nemocných, obnovení oběhu bylo dosaženo v 56 % případů, příhodu přežilo 43% a domů bylo s příznivým neurologickým výsledkem propuštěno 15 % postižených [1]. Taková je realita, přesto není prognóza pacientů se srdeční zástavou beznadějná a správný a koordinovaný postup všech zúčastněných složek, tedy laických zachránců, personálu tísňových linek, záchranných služeb i zdravotníků v nemocničních zařízeních může naději pacienta na přežití významně zvýšit. Obdobně může zlepšit prognózu resuscitovaných důkladný trénink a implementace protokolů léčby [2–4]. Každá smysluplná intervence, která by prognózu resuscitovaných zlepšila, tak má být řádně v klinické praxi otestována a zhodnocena. V tomto kontextu je pak zajímavé, až zarážející, jak relativně málo důkazů máme pro využití ně­kte­rých rutinně indikovaných terapeutických intervencí po srdeční zástavě: není jednoznačné, jakým ventilačním režimem je vhodné pacienta ventilovat, jak moc (či málo – hyperoxygenace škodí) kyslíku použít, zda a jak optimalizovat hemodynamiku (i.v. tekutiny nemají žádné jasné opodstatnění, nicméně se zdá, že chladný fyziologický roztok nebo Ringer laktát v rámci indukce mírné hypotermie jsou dobře tolerovány a možná i hemodynamiku příznivě ovlivňují) – tedy, z podstaty věci lze usuzovat na vhodnost hemodynamické podpory zachovávající dostatečnou orgánovou perfuzi, nejsou dostatečná data pro použití jednotlivých inotropik a vazopresorů a jejich „koktejlů“, stejně jako nejsou dostatečná data pro použití antiarytmik u trvajícího ROSC (return of spontaneous circulation), není jasné, zda sofistikované mechanické podpůrné systémy zlepšují prognózu pacientů po ROSC s kardiovaskulární dysfunkcí, není jasné, zda preventivní podání antiepileptik nějak ovlivní osud (včetně neurologického) po zástavě, a tak snad jen snížení hyperglykemie (ale bez hypoglykemických příhod!) a mírná terapeutická hypotermie má v poresuscitační péči silnější důkazy pro své využití [5]. Terapeutická hypotermie s cílovou teplotou 32–34 °C by tak měla být indikována u všech pacientů po srdeční zástavě setrvávajících v komatu (ať již byl iniciální rytmus fibrilace komor, nebo jiný), u kterých se podaří obnovit spontánní oběh nebo je úspěšně implantována dočasná orgánová podpora/náhrada (např. ECMO – extrakorporální membránová oxygenace), kteří nemají jednoznačnou kontraindikaci hypotermie (nezvladatelný šokový stav, aktivní krvácení, recidivující hemodynamicky kompromitující arytmie), a přitom je třeba mít na paměti, že hlavním předpokladem úspěšného výsledku (tj. přežití s příznivým neurologickým výsledkem) je především minimalizace časových prodlev, kvalitní resuscitace, komplexní intenzivní péče a léčba vyvolávající příčiny zástavy. Včasné zahájení hypotermie a pravděpodobně i co nejrychlejší dosažení cílové tělesné teploty pak pravděpodobně zlepší nejen neurologický výsledek, ale i přežití pacienta po oběhové zástavě [5,6]. Navíc, celá situace je ještě komplikována faktem, že použití hypotermie ztěžuje orientaci v individuálním odhadu prognózy pacienta [7,8], takže jakékoli prognostické odhady v časných fázích léčby jsou zcela nespolehlivé, a to v obou směrech, tedy jak šance na příznivý, tak nepříznivý výsledek.

Protektivní působení mírné hypotermie je multifaktoriální, ovlivňuje příznivě řadu škodlivých procesů a tyto příznivé účinky jsou pravděpodobně zodpovědné za prospěšný vliv hypotermie [9].

Patofyziologický podklad neuroprotektivního účinku mírné terapeutické hypotermie

Je tradováno, že neuroprotektivní vliv hypotermie je podmíněn zpomalením metabolických procesů v mozku, což vede ke snížení potřeby glukózy a kyslíku. Platí, že na každé snížení tělesné teploty o 1°C dochází ke snížení mozkového metabolizmu o 5–7% [10,11], nicméně protektivní účinky se zdají být podstatně vyšší, než lze vysvětlit právě jen poklesem metabolizmu. V posledních letech jsou tak bedlivě studovány destruktivní procesy v neuronech a ostatních mozkových buňkách spojené s ischemií a reperfuzí.

Apoptóza. Ischemické buňky mohou znekrotizovat nebo si plně či částečně obnoví své funkce anebo nastoupí cestu programované buněčné smrti, apoptózy. Rozvoj a regulace apoptózy je spojena s aktivací kaspázových enzymatických systémů [12–14] a řada studií potvrdila příznivý vliv hypotermie na buněčné poškození způsobené apoptózou. Zdá se, že vliv je podmíněn inhibicí kaspázové aktivace a mitochondriální dysfunkce [14]. Tyto procesy probíhají až do období 48 hod po poškození mozku, což může vysvětlit příznivý vliv hypotermie, i když je zahájena delší dobu po zástavě.

Neuroexcitační kaskáda. Během mozkové ischemie a reperfuze probíhá řada škodlivých neuroexcitačních procesů, které jsou pravděpodobně hypotermií zlepšovány [15], zejména ovlivněním vstupu kalciových iontů do buněk. Při přerušení dodávky kyslíku do mozku se velmi rychle vyčerpají zásoby vysokoenergetických fosfátů, jako je ATP a fosfokreatin [11]. Odbourání ATP a kompenzační aktivace anaerobní glykolýzy vede ke zvýšení anorganického fosfátu, laktátu a H+ iontů, což vede k intra  i extracelulární acidóze. Energetické vyčerpání dále vede k selhání ATP dependentních Na+-K+ pump a kaliových, sodíkových a kalciových kanálů, což způsobí ztrátu sodíkového gradientu a influx kalcia do buňky. Nedostatek ATP dále zhoršuje odstraňování kalcia z buňky, a vede tak ke hromadění intracelulárního Ca2+ [16]. Přebytek kalcia způsobuje mitochondriální dysfunkci, aktivaci řady intracelulárních enzymatických systémů (kináz a proteáz) a indukci časných genů. Dalším důležitým důsledkem depolarizace neuronálních membrán je uvolnění značného množství excitačního neurotransmiteru glutamátu do extracelulárního prostoru [16], přitom za normálních podmínek jsou neurony vystaveny glutamátu jen ve velmi krátkých časových obdobích a v malém množství. Absorpce tohoto nadbytku glutamátu je opět ATP dependentní, což při nedostatku ATP vede k dalšímu zhoršování stavu a bludnému kruhu „excitotoxické kaskády“. Ta udržuje neurony v permanentní hyperexcitabilitě a způsobuje další buněčné poškození a smrt. I poté, co se dostanou hladiny glutamátu k normě, aktivace glutamátových receptorů přetrvává a je považována za významný mediátor mozkové buněčné smrti [15]. Řada zvířecích experimentů prokázala, že hypotermie zlepšuje iontovou homeostázu a blokuje nebo zpomaluje mnoho z těchto neuroexcitačních procesů [17–22].

Imunitní odpověď a zánět. Ischemicko-reperfuzní poškození také aktivuje zánětové a imunologické reakce, především se jedná o uvolnění pro zánětových mediátorů TNF-α a interleukinu-1 z astrocytů, mikroglie a endotelu. Hladiny stoupají již hodinu po reperfuzi a zůstávají zvýšené až 5 dní poté [16]. Stimulují akumulaci zánětových buněk v poškozených částech mozku a expresi adhezních molekul na leukocytech a endoteliálních buňkách. Leukocytární infiltrace vede k dalšímu buněčnému poškození fagocytózou, syntézou toxinů a další stimulaci imunitní odpovědi [15]. Bylo prokázáno ve zvířecím experimentu i klinicky, že hypotermie tyto ischemicko-reperfuzní imunitní reakce tlumí [23,24]. Stejně tak dochází k utlumení reperfuzí způsobeného poškození DNA, lipoperoxidace a produkce leukotrienů [20] a dále ke snížení produkce oxidu dusnatého (NO), který hraje v post ischemickém mozkovém poškození jednu z klíčových rolí.

Produkce volných kyslíkových radikálů. Kyslíkové radikály O2–, NO2– a OH významně ovlivňují přechod buňky od poškození k nekróze [19]. Nadbytek volných kyslíkových radikálů způsobuje peroxidaci lipidů, proteinů a nukleových kyselin, která při ischemii není antioxidačními mechanizmy dostatečně tlumena. Hypotermie tyto destruktivní procesy zpomaluje, čímž umožňuje endogenním antioxidačním mechanizmům působit [18,19].

Membránová a cévní permeabilita a vznik edému mozku. Nepříznivý vliv mozkového edému na poškození neuronů je všeobecně známý. Ischemický inzult poškozuje hematoencefalickou bariéru, což vede k rozvoji mozkového edému a zdá se, že hypotermie tento efekt tlumí „stabilizačním účinkem“ na membrány a hematoencefalickou bariéru [25]. Ischemie a reperfuze také přímo zhoršuje fluiditu a integritu buněčných membrán a tento proces je hypotermií také tlumen [26].

Mozkový „thermo pooling“. Tento fenomén v mozku znamená výskyt oblastí, které mají vyšší teplotu, než je centrální teplota (a to až o 2–3 °C!), což je při mozkovém poškození popsáno [27]. Je nepochybné, že hypertermie významně rozsah neurologického poškození zhoršuje, a tak oblasti s vyšší teplotou jsou k poškození ještě náchylnější. Hypotermie může tento nepříznivý fenomén tlumit [28].

Z uvedených patofyziologických mechanizmů mozkového poškození a vlivu hypotermie na jejich rozvoj a útlum je patrné, že mírná hypotermie všechny tyto destruktivní mechanizmy způsobené ischemií, reperfuzí a mozkovým edémem zpomaluje a tlumí, a tím působí neuroprotektivně (obr.).

Obr. Schematicky zobrazený vliv hypotermie na nepříznivé pochody v mozku při ischemicko-repefuzním poškození. Hypotermie všechny uvedené procesy tlumí nebo zpomaluje.
Obr. Schematicky zobrazený vliv hypotermie na nepříznivé pochody v mozku při ischemicko-repefuzním poškození. Hypotermie všechny uvedené procesy tlumí nebo zpomaluje.

Místo mírné terapeutické hypotermie v neuroprotektivním přístupu k pacientům po srdeční zástavě a doba jejího trvání

Potenciální přínos použití mírné hypotermie v klinické praxi u pacientů po srdeční zástavě s hrozícím poškozením mozku vychází z uvedených příznivých vlivů hypotermie na patofyziologické mechanizmy podílející se na mozkovém poškození, a to nejen během vlastní anoxicko-ischemické fáze, tj. během zástavy oběhu, ale zejména ve fázi ischemicko-reperfuzní, tj. v časném poresuscitačním období. Navíc se zdá, že mozková ischemie může přetrvávat i několik hodin po úspěšném obnovení oběhu, přestože obsah arteriálního kyslíku je dostatečný [29]. Ve zvířecím experimentu měla hypotermie příznivý vliv i několik hodin po zástavě, s tím ale, že čím dříve byla zahájena, tím větší protektivní vliv měla, což vyplývá z logiky celé problematiky. V klinické praxi byly prováděny pokusy s použitím mírné hypotermie (MH) od 50. let minulého století a řada menších nerandomizovaných studií prokázala možný příznivý efekt [15]. Fakt, že klinické použití hypotermie u nemocných po srdeční zástavě bylo bezpečné a v rutinní praxi dobře proveditelné, vedlo k provedení 2 randomizovaných studií publikovaných v roce 2002, které zásadně změnily celý přístup k MH a roli MH v poresuscitační péči [30,31], příznivý vliv následně potvrdily i systematické přehledy a metaanalýzy [32–34]. Přes všechna dostupná data není ještě zdaleka vše, co se týká účinků mírné hypotermie, dostatečně objasněno, a celá problematika tak vyžaduje další studie a analýzy.

Jednou ze základních otázek, kterou si kladou i autoři Sýkora a Janda v tomto čísle časopisu Vnitřní lékařství je, jak dlouho nemocné po srdeční zástavě s úspěšným ROSC v léčbě mírnou hypotermií udržovat. Jak vyplývá z uvedených patofyziologických poznámek, celý proces ischemie a reperfuze je značně komplexní a trvá řadu hodin až dní – apoptotické procesy v mozku trvají až 48 hod po zástavě, patologické zánětové a imunologické reakce po reperfuzi jsou aktivovány hodinu po zástavě a zůstávají zvýšené až 5 dní poté (viz výše). U dětí s obnoveným spontánním oběhem po srdeční zástavě, které zůstávají v komatu, doporučují současná guidelines hypotermii s cílovou teplotou jádra 32–34 ºC na alespoň 24 hod [35], u novorozenců po srdeční zástavě s rozvíjející se hypoxicko ischemickou encefalopatií je doporučováno dle současných guidelines (a to na základě několika randomizovaných studií) zahájit léčbou mírnou hypotermií (33,5–34,5 °C) do 6 hod po porodu a pokračovat v ní dokonce 72 hod [36]. Vrátíme-li se ke dvěma klíčovým studiím, které celou éru mírné hypotermie v současné intenzivní medicíně zahájily, pak ve studii Bernarda [30] byli nemocní chlazeni na 12 hod a v druhé studii HACA group [31] na 24 hod. V této studii bylo navíc chlazení zahájeno průměrně až po 105 minutách po zástavě a takto příznivých výsledků bylo dosaženo, přestože tělesná teplota pacientů klesla k cílovým hodnotám (32–34 °C) až po 8 hodinách po obnovení oběhu [31]. V současných doporučeních [5] tak nemohli autoři uvést jiný interval pro udržovací fázi mírné terapeutické hypotermie než zmíněných 12–24 hod a nám nezbývá než konstatovat, že v rutinní praxi je u pacientů setrvávajících po srdeční zástavě v komatu, kteří nemají kontraindikaci, vhodné zahájit léčbu mírnou hypotermií co nejdříve a po dosažení cílové teploty (32–34 °C) ji udržovat minimálně 12 hod, lépe však 24 hod.

Podpořeno grantem ČKS „Sledování nemocných po náhlé zástavě oběhu s ohledem na nutnost časného invazivního vyšetření a zahájení orgánové podpory“.

MU Dr. Jan Bělohlávek, Ph.D.
www.vfn.cz
e-mail: Jan.Belohlavek@vfn.cz

Doručeno do redakce: 2. 1. 2011


Zdroje

1. Franěk O, Pokorná M, Sukupová P. Pre‑hospital cardiac arrest in Prague, Czech Republic –  The Utstein‑style report. Resuscitation 2010; 81: 831– 835.

2. Sunde K, Pytte M, Jacobsen D et al. Implementation of a standardised treatment protocol for post resuscitation care after out‑ of‑ hospital cardiac arrest. Resuscitation 2007; 73: 29– 39.

3. Gaieski DF, Band RA, Abella BS et al. Early goal‑ directed hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out‑ of‑ hospital cardiac arrest. Resuscitation 2009; 80: 418– 424.

4. Kirves H, Skrifvars MB, Vahakuopus M et al. Adherence to resuscitation guidelines during prehospital care of cardiac arrest patients. Eur J Emerg Med 2007; 14: 75– 81.

5. Nolan JP, Hazinski MF, Billi JE et al. Part 1: Executive summary: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation 2010; 81 (Suppl 1): e1– e25.

6. Deem S, Hurford WE. Respiratory controversies in the critical care setting. Should all patients be treated with hypothermia following cardiac arrest? Respir Care 2007; 52: 443– 450.

7. Wijdicks EF, Hijdra A, Young GB et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence‑based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006; 67: 203– 210.

8. Rossetti AO, Oddo M, Logroscino G et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol 2010; 67: 301– 307.

9. Zhao H, Steinberg GK, Sapolsky RM. General versus specific actions of mild‑ moderate hypothermia in attenuating cerebral ischemic damage. J Cereb Blood Flow Metab 2007; 27: 1879– 1894.

10. Milde LN. Clinical use of mild hypothermia for brain protection: a dream revisited. J Neurosurg Anesthesiol 1992; 4: 211– 215.

11. Small DL, Morley P, Buchan AM. Biology of ischemic cerebral cell death. Prog Cardiovasc Dis 1999; 42: 185– 207.

12. Adachi M, Sohma O, Tsuneishi S et al. Combination effect of systemic hypothermia and caspase inhibitor administration against hypoxic‑ ischemic brain damage in neonatal rats. Pediatr Res 2001; 50: 590– 595.

13. Xu L, Yenari MA, Steinberg GK et al. Mild hypothermia reduces apoptosis of mouse neurons in vitro early in the cascade. J Cereb Blood Flow Metab 2002; 22: 21– 28.

14. Ning XH, Chen SH, Xu CS et al. Hypothermic protection of the ischemic heart via alterations in apoptotic pathways as assessed by gene array analysis. J Appl Physiol 2002; 92: 2200– 2207.

15. Polderman KH. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality –  Part 1: Indications and evidence. Intensive Care Med 2004; 30: 556– 575.

16. Siesjo BK, Bengtsson F, Grampp W et al. Calcium, excitotoxins, and neuronal death in brain. Ann NY Acad Sci 1989; 568: 234– 251.

17. Busto R, Dietrich WD, Globus MY et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7: 729– 738.

18. Globus MYT, Alonso O, Dietrich WD et al. Glutamate release and free radical production following brain injury: effects of post‑traumatic hypothermia. J Neurochem 1995; 65: 1704– 1711.

19. Busto R, Globus MY, Dietrich WD et al. Effect of mild hypothermia on ischemia‑induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989; 20: 904– 910.

20. Dempsey RJ, Combs DJ, Maley ME et al. Moderate hypothermia reduces postischemic edema development and leukotriene production. Neurosurgery 1987; 21: 177– 181.

21. Dietrich WD, Busto R, Globus MY et al. Brain damage and temperature: cellular and molecular mechanisms. Adv Neurol 1996; 71: 177– 194.

22. Globus MYT, Busto R, Lin B et al. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. J Neurochem 1995; 65: 1250– 1256.

23. Aibiki M, Maekawa S, Ogura S et al. Effect of moderate hypothermia on systemic and internal jugular plasma IL‑6 levels after traumatic brain injury in humans. J Neurotraum 1999; 16: 225– 232.

24. Kimura A, Sakurada S, Ohkuni H et al. Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells. Crit Care Med 2002; 30: 1499– 1502.

25. Chi OZ, Liu X, Weiss HR. Effects of mild hypothermia on bloodbrain barrier disruption during isoflurane or pentobarbital anesthesia. Anesthesiology 2001; 95: 933– 938.

26. Fischer S, Renz D, Wiesnet M et al. Hypothermia abolishes hypoxia‑induced hyperpermeability in brain microvessel endothelial cells. Brain Res Mol Brain Res 1999; 74: 135– 144.

27. Schwab S, Spranger M, Aschhoff A et al. Brain temperature monitoring and modulation in patients with severe MCA infarction. Neurology 1997; 48: 762– 767.

28. Castillo J, Dávalos A, Noya M. Progression of ischaemic stroke and excitotoxic amino acids. Lancet 1997; 349: 79– 83.

29. Oku K, Kuboyama K, Safar P et al. Cerebral and systemic arteriovenous oxygen monitoring after cardiac arrest: inadequate cerebral oxygen delivery. Resuscitation 1994; 27: 141– 152.

30. Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out‑ of‑ hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557– 663.

31. The Hypothermia After Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549– 556.

32. Holzer M, Bernard SA, Hachimi‑ Idrissi S et al. Collaborative Group on Induced Hypothermia for Neuroprotection after Cardiac Arrest. Hypothermia for neuroprotection after cardiac arrest: systematic reviwe and individual patient data met‑ analysis. Cric Care Med 2005; 33: 414– 418.

33. Cheung KW, Green RS, Magee KD. Systematic reviwe of randomized controlled trials of therapeutic hypothermia as a neuroprotectant in post cardiac arrest patients. Can J Emerg Med 2006; 8: 329– 337.

34. Arrich J, Holzer M, Herkner H et al. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Ann Intern Med 2010; 16: JC– 22.

35. Biarenta D, Binghamb R, Eichc Ch et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 6. Paediatric life support. Resuscitation 2010; 81: 1364– 1388.

36. Richmonda S, Wyllie J. European Resuscitation Council Guidelines for Resuscitation 2010. Section 7. Resuscitation of babies at birth. Resuscitation 2010; 81: 1389– 1399.

Štítky
Diabetologie Endokrinologie Interní lékařství

Článek vyšel v časopise

Vnitřní lékařství

Číslo 1

2011 Číslo 1

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
nový kurz
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Léčba bolesti v ordinaci praktického lékaře
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se