-
Články
- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii
Autoři: Takuya Matsuo aff001; Takahiro Iida aff001; Ayumi Ohmura aff001; Malavika Gururaj aff001; Daisaku Kato aff001; Risa Mutoh aff001; Kunio Ihara aff001; Masahiro Ishiura aff001
Působiště autorů: Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan aff001; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan aff002
Vyšlo v časopise: The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008814
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008814Souhrn
The circadian clocks in chlorophyte algae have been studied in two model organisms, Chlamydomonas reinhardtii and Ostreococcus tauri. These studies revealed that the chlorophyte clocks include some genes that are homologous to those of the angiosperm circadian clock. However, the genetic network architectures of the chlorophyte clocks are largely unknown, especially in C. reinhardtii. In this study, using C. reinhardtii as a model, we characterized RHYTHM OF CHLOROPLAST (ROC) 75, a clock gene encoding a putative GARP DNA-binding transcription factor similar to the clock proteins LUX ARRHYTHMO (LUX, also called PHYTOCLOCK 1 [PCL1]) and BROTHER OF LUX ARRHYTHMO (BOA, also called NOX) of the angiosperm Arabidopsis thaliana. We observed that ROC75 is a day/subjective day-phase-expressed nuclear-localized protein that associates with some night-phased clock genes and represses their expression. This repression may be essential for the gating of reaccumulation of the other clock-related GARP protein, ROC15, after its light-dependent degradation. The restoration of ROC75 function in an arrhythmic roc75 mutant under constant darkness leads to the resumption of circadian oscillation from the subjective dawn, suggesting that the ROC75 restoration acts as a morning cue for the C. reinhardtii clock. Our study reveals a part of the genetic network of C. reinhardtii clock that could be considerably different from that of A. thaliana.
Klíčová slova:
Arabidopsis thaliana – Bioluminescence – Circadian oscillators – Circadian rhythms – Graphs – Chlamydomonas reinhardtii – Sequence motif analysis – Transcription factors
Zdroje
1. Spoelstra K, Wikelski M, Daan S, Loudon ASI, Hau M. Natural selection against a circadian clock gene mutation in mice. Proc Natl Acad Sci U S A. 2016;113 : 686–691. doi: 10.1073/pnas.1516442113 26715747
2. Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci. National Academy of Sciences; 1998;95 : 8660–4. doi: 10.1073/pnas.95.15.8660 9671734
3. Young MW, Kay SA. Time zones: A comparative genetics of circadian clocks. Nat Rev Genet. 2001;2 : 702–715. doi: 10.1038/35088576 11533719
4. Hsu PY, Harmer SL. Wheels within wheels: The plant circadian system. Trends in Plant Science. 2014. pp. 240–249. doi: 10.1016/j.tplants.2013.11.007 24373845
5. Nohales MA, Kay SA. Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural and Molecular Biology. Nature Publishing Group; 2016. pp. 1061–1069. doi: 10.1038/nsmb.3327 27922614
6. Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science (80-). 2000;289 : 768–771. doi: 10.1126/science.289.5480.768 10926537
7. Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science (80-). 2001;293 : 880–883. doi: 10.1126/science.1061320 11486091
8. Wang ZY, Tobin EM. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell. 1998;93 : 1207–1217. doi: 10.1016/s0092-8674(00)81464-6 9657153
9. Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell. 1998;93 : 1219–1229. doi: 10.1016/s0092-8674(00)81465-8 9657154
10. Hazen SP, Schultz TF, Pruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA. LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci U S A. 2005;102 : 10387–10392. doi: 10.1073/pnas.0503029102 16006522
11. Onai K, Ishiura M. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes to Cells. 2005;10 : 963–972. doi: 10.1111/j.1365-2443.2005.00892.x 16164597
12. Helfer A, Nusinow DA, Chow BY, Gehrke AR, Bulyk ML, Kay SA. LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol. 2011;21 : 126–133. doi: 10.1016/j.cub.2010.12.021 21236673
13. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, et al. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature. 2011;475 : 398–402. doi: 10.1038/nature10182 21753751
14. Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H. PSEUDO-RESPONSE ReGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell. 2010;22 : 594–605. doi: 10.1105/tpc.109.072892 20233950
15. Dai S, Wei X, Pei L, Thompson RL, Liu Y, Heard JE, et al. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. Plant Cell. 2011;23 : 961–972. doi: 10.1105/tpc.111.084293 21447790
16. Lewis LA, McCourt RM. Green algae and the origin of land plants. American Journal of Botany. 2004. pp. 1535–1556. doi: 10.3732/ajb.91.10.1535 21652308
17. Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M. How the green alga Chlamydomonas reinhardtii keeps time. Protoplasma. 2010;244 : 3–14. doi: 10.1007/s00709-010-0113-0 20174954
18. Matsuo T, Ishiura M. New insights into the circadian clock in Chlamydomonas. International Review of Cell and Molecular Biology. 2010.
19. Matsuo T, Ishiura M. Chlamydomonas reinhardtii as a new model system for studying the molecular basis of the circadian clock. FEBS Letters. 2011. pp. 1495–1502. doi: 10.1016/j.febslet.2011.02.025 21354416
20. Noordally ZB, Millar AJ. Clocks in algae. Biochemistry. American Chemical Society; 2015;54 : 171–183. doi: 10.1021/bi501089x 25379817
21. Bouget FY, Lefranc M, Thommen Q, Pfeuty B, Lozano JC, Schatt P, et al. Transcriptional versus non-transcriptional clocks: A case study in Ostreococcus. Marine Genomics. Elsevier; 2014. pp. 17–22. doi: 10.1016/j.margen.2014.01.004 24512973
22. Corellou F, Schwartz C, Motta JP, Djouani-Tahri EB, Sanchez F, Bougeta FY. Clocks in the green lineage: Comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus. Plant Cell. 2009;21 : 3436–3449. doi: 10.1105/tpc.109.068825 19948792
23. Thommen Q, Pfeuty B, Morant PE, Corellou F, Bouget FY, Lefranc M. Robustness of circadian clocks to daylight fluctuations: Hints from the picoeucaryote ostreococcus tauri. PLoS Comput Biol. 2010;6: e1000990. doi: 10.1371/journal.pcbi.1000990 21085637
24. Morant PE, Thommen Q, Pfeuty B, Vandermoere C, Corellou F, Bouget FY, et al. A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock. Chaos. American Institute of Physics Inc.; 2010;20 : 045108. doi: 10.1063/1.3530118 21198120
25. Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M. A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev. 2008;22 : 918–930. doi: 10.1101/gad.1650408 18334618
26. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J. Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J. 2001;26 : 15–22. doi: 10.1046/j.1365-313x.2001.01003.x 11359606
27. Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, et al. Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant, Cell Environ. Blackwell Publishing Ltd; 2010;33 : 1614–1626. doi: 10.1111/j.1365-3040.2010.02168.x 20444223
28. Djouani-Tahri EB, Christie JM, Sanchez-Ferandin S, Sanchez F, Bouget FY, Corellou F. A eukaryotic LOV-histidine kinase with circadian clock function in the picoalga Ostreococcus. Plant J. 2011;65 : 578–588. doi: 10.1111/j.1365-313X.2010.04444.x 21235644
29. Iliev D, Voytsekh O, Schmidt E-M, Fiedler M, Nykytenko A, Mittag M. A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock. Plant Physiol. 2006;142 : 797–806. doi: 10.1104/pp.106.085944 16920878
30. Dathe H, Prager K, Mittag M. Novel interaction of two clock-relevant RNA-binding proteins C3 and XRN1 in Chlamydomonas reinhardtii. FEBS Lett. 2012;586 : 3969–73. doi: 10.1016/j.febslet.2012.09.046 23068615
31. Matsuo T, Iida T, Ishiura M. N-terminal acetyltransferase 3 gene is essential for robust circadian rhythm of bioluminescence reporter in Chlamydomonas reinhardtii. Biochem Biophys Res Commun. 2012;418 : 342–346. doi: 10.1016/j.bbrc.2012.01.023 22266323
32. Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, et al. A plant cryptochrome controls key features of the chlamydomonas circadian clock and its life cycle. Plant Physiol. American Society of Plant Biologists; 2017;174 : 185–201. doi: 10.1104/pp.17.00349 28360233
33. Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. Journal of Plant Physiology. Elsevier GmbH; 2017. pp. 4–14. doi: 10.1016/j.jplph.2017.05.021 28619534
34. Devlin PF, Kay SA. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell. 2000;12 : 2499–2509. doi: 10.1105/tpc.12.12.2499 11148293
35. Niwa Y, Matsuo T, Onai K, Kato D, Tachikawa M, Ishiura M. Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 2013;110 : 13666–71. doi: 10.1073/pnas.1220004110 23898163
36. Matsuo T, Onai K, Okamoto K, Minagawa J, Ishiura M. Real-time monitoring of chloroplast gene expression by a luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Mol Cell Biol. 2006;26 : 863–870. doi: 10.1128/MCB.26.3.863-870.2006 16428442
37. Satbhai SB, Yamashino T, Okada R, Nomoto Y, Mizuno T, Tezuka Y, et al. Pseudo-response regulator (PRR) homologues of the moss physcomitrella patens: Insights into the evolution of the prr family in land plants. DNA Res. 2011;18 : 39–52. doi: 10.1093/dnares/dsq033 21186242
38. Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, et al. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii. Plant Cell. 2012;24 : 2992–3008. doi: 10.1105/tpc.112.098947 22773746
39. Kinoshita A, Niwa Y, Onai K, Yamano T, Fukuzawa H, Ishiura M, et al. CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas. Dutcher SK, editor. PLoS Genet. 2017;13: e1006645. doi: 10.1371/journal.pgen.1006645 28333924
40. Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 2003;34 : 733–739. doi: 10.1046/j.1365-313x.2003.01759.x 12787253
41. Beerli RR, Segal DJ, Dreier B, Barbas CF. Toward controlling gene expression at will: Specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A. 1998;95 : 14628–14633. doi: 10.1073/pnas.95.25.14628 9843940
42. Simon R, Igeno MI, Coupland G. Activation of floral meristem identity genes in Arabidopsis. Nature. 1996;384 : 59–62. doi: 10.1038/384059a0 8900276
43. Ducos E, Vergès V, de Bernonville TD, Blanc N, Giglioli-Guivarc’h N, Dutilleul C. Remarkable evolutionary conservation of antiobesity ADIPOSE/WDTC1 homologs in animals and plants. Genetics. 2017;207 : 153–162. doi: 10.1534/genetics.116.198382 28663238
44. Groh BS, Yan F, Smith MD, Yu Y, Chen X, Xiong Y. The antiobesity factor WDTC 1 suppresses adipogenesis via the CRL 4 WDTC 1 E3 ligase. EMBO Rep. 2016;17 : 638–647. doi: 10.15252/embr.201540500 27113764
45. Suh JM, Zeve D, McKay R, Seo J, Salo Z, Li R, et al. Adipose Is a Conserved Dosage-Sensitive Antiobesity Gene. Cell Metab. 2007;6 : 195–207. doi: 10.1016/j.cmet.2007.08.001 17767906
46. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A. National Academy of Sciences; 2006;103 : 11647–11652. doi: 10.1073/pnas.0604795103 16868079
47. Monnier A, Liverani S, Bouvet R, Jesson B, Smith JQ, Mosser J, et al. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics. BioMed Central Ltd.; 2010;11 : 192. doi: 10.1186/1471-2164-11-192 20307298
48. Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, et al. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell. 2006;18 : 1908–30. doi: 10.1105/tpc.106.041749 16798888
49. Uehara TN, Mizutani Y, Kuwata K, Hirota T, Sato A, Mizoi J, et al. Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proc Natl Acad Sci. 2019;116 : 11528–11536. doi: 10.1073/pnas.1903357116 31097584
50. van Ooijen G, Hindle M, Martin SF, Barrios-Llerena M, Sanchez F, Bouget FY, et al. Functional Analysis of Casein Kinase 1 in a Minimal Circadian System. PLoS One. 2013;8: e70021. doi: 10.1371/journal.pone.0070021 23936135
51. Gorman DS, Levine RP. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965;54 : 1665–9. doi: 10.1073/pnas.54.6.1665 4379719
52. Shimogawara K, Fujiwara S, Grossman A, Usuda H. High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics. 1998;148 : 1821–8. 9560396
53. Yamano T, Iguchi H, Fukuzawa H. Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng. 2013;115 : 691–694. doi: 10.1016/j.jbiosc.2012.12.020 23333644
54. Okamoto K, Onai K, Ishiura M. RAP, an integrated program for monitoring bioluminescence and analyzing circadian rhythms in real time. Anal Biochem. 2005;340 : 193–200. doi: 10.1016/j.ab.2004.11.007 15840491
55. Kuchimaru T, Iwano S, Kiyama M, Mitsumata S, Kadonosono T, Niwa H, et al. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun. 2016;7 : 11856. doi: 10.1038/ncomms11856 27297211
56. Sueoka N. Mitotic replication of deoxiribonucleic acid in Chlamydomonas reinhardti. Proc Natl Acad Sci U S A. 1960;46 : 83–91. doi: 10.1073/pnas.46.1.83 16590601
57. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science. 2007;318 : 245–250. doi: 10.1126/science.1143609 17932292
Článek Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolismČlánek GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiationČlánek yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 6- Co dokáže ultrazvuková přilba pro neinvazivní stimulaci mozku
- S prof. Vladimírem Paličkou o racionální suplementaci kalcia a vitaminu D v každodenní praxi
- Nostiriazyn – spolehlivá 1. volba u nekomplikovaných infekcí močových cest
- 4× telegraficky z oblasti kardiovaskulární prevence – „jednohubky“ z klinického výzkumu 2026/3
- Nakupování jako nemoc. Jaké jsou její příčiny a možnosti terapie?
-
Všechny články tohoto čísla
- Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior
- Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses
- JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Regulation of olfactory-based sex behaviors in the silkworm by genes in the sex-determination cascade
- Osteocalcin promotes bone mineralization but is not a hormone
- A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5
- Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks
- Age-of-onset information helps identify 76 genetic variants associated with allergic disease
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure
- Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves
- Transcriptomic stratification of late-onset Alzheimer's cases reveals novel genetic modifiers of disease pathology
- Alpha- and beta-adrenergic octopamine receptors in muscle and heart are required for Drosophila exercise adaptations
- Identification of Clec4b as a novel regulator of bystander activation of auto-reactive T cells and autoimmune disease
- Exclusive breastfeeding can attenuate body-mass-index increase among genetically susceptible children: A longitudinal study from the ALSPAC cohort
- Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development
- BRM-SWI/SNF chromatin remodeling complex enables functional telomeres by promoting co-expression of TRF2 and TRF1
- MYO5B mutations in pheochromocytoma/paraganglioma promote cancer progression
- Genetic analysis of osteoblast activity identifies Zbtb40 as a regulator of osteoblast activity and bone mass
- In vivo modeling of metastatic human high-grade serous ovarian cancer in mice
- GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiation
- The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii
- An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons
- BK channel density is regulated by endoplasmic reticulum associated degradation and influenced by the SKN-1A/NRF1 transcription factor
- Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3′UTR intron-containing NMD targets
- Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
- Control of mRNA translation by dynamic ribosome modification
- ROS regulation of RAS and vulva development in Caenorhabditis elegans
- The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae
- yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis
- Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections
- The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants
- Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation
- Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits
- Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity
- A Bayesian method to estimate variant-induced disease penetrance
- NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways
- Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods
- Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae
- Phylogenetic background and habitat drive the genetic diversification of Escherichia coli
- VolcanoFinder: Genomic scans for adaptive introgression
- Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson’s disease through mitochondrial dysfunction
- Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish)
- Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling
- Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity
- Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes
- Regulation of epithelial integrity and organ growth by Tctp and Coracle in Drosophila
- The brachyceran de novo gene PIP82, a phosphorylation target of aPKC, is essential for proper formation and maintenance of the rhabdomeric photoreceptor apical domain in Drosophila
- Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae
- All three mammalian MutL complexes are required for repeat expansion in a mouse cell model of the Fragile X-related disorders
- Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase
- The facts of the matter: What is a hormone?
- Lack of reproducibility in osteocalcin-deficient mice
- Independent validation of experimental results requires timely and unrestricted access to animal models and reagents
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Osteocalcin promotes bone mineralization but is not a hormone
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání