-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaWidespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods
Autoři: Samuel H. Lewis aff001; Laura Ross aff004; Stevie A. Bain aff004; Eleni Pahita aff002; Steven A. Smith aff005; Richard Cordaux aff006; Eric A. Miska aff001; Boris Lenhard aff002; Francis M. Jiggins aff001; Peter Sarkies aff002; Stephen A. Smith aff005
Působiště autorů: Department of Genetics, University of Cambridge, Cambridge, United Kingdom aff001; MRC London Institute of Medical Sciences, London, United Kingdom aff002; Institute of Clinical Sciences, Imperial College London, London, United Kingdom aff003; Institute of Evolutionary Biology, Edinburgh, United Kingdom aff004; Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America aff005; Laboratoire Ecologie et Biologie des Interactions Universite de Poitiers, France aff006; Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom aff007; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway aff008
Vyšlo v časopise: Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genet 16(6): e32767. doi:10.1371/journal.pgen.1008864
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008864Souhrn
Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.
Klíčová slova:
Arthropoda – DNA methylation – Drosophila melanogaster – Gene expression – Insects – Invertebrate genomics – Methylation – Nucleosomes
Zdroje
1. Holliday R, Kakutani T, Martienssen R, Richards E. The inheritance of epigenetic defects. Science. 1987;238 : 163–70. doi: 10.1126/science.3310230 3310230
2. Holliday R. Epigenetics: A historical overview. Epigenetics. 2006. pp. 76–80. doi: 10.4161/epi.1.2.2762 17998809
3. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics. 2010. pp. 204–220. doi: 10.1038/nrg2719 20142834
4. Jeltsch A. Molecular enzymology of mammalian DNA methyltransferases. Current Topics in Microbiology and Immunology. 2006. pp. 203–225. doi: 10.1007/3-540-31390-7_7 16570849
5. Nashun B, Hill PWS, Hajkova P. Reprogramming of cell fate: epigenetic memory and the erasure of memories past. EMBO J. 2015;34 : 1296–308. doi: 10.15252/embj.201490649 25820261
6. Ponger L, Li WH. Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. Mol Biol Evol. 2005;22 : 1119–1128. doi: 10.1093/molbev/msi098 15689527
7. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16 : 6–21. doi: 10.1101/gad.947102 11782440
8. Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998;20 : 116–117. doi: 10.1038/2413 9771701
9. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9 : 465–476. doi: 10.1038/nrg2341 18463664
10. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science (80-). 2010;328 : 916–919. doi: 10.1126/science.1186366 20395474
11. Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci. 2010;107 : 8689–8694. doi: 10.1073/pnas.1002720107 20395551
12. Rošić S, Amouroux R, Requena CE, Gomes A, Emperle M, Beltran T, et al. Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity. Nat Genet. 2018;50 : 452–459. doi: 10.1038/s41588-018-0061-8 29459678
13. Bewick AJ, Vogel KJ, Moore AJ, Schmitz RJ. Evolution of DNA methylation across insects. Mol Biol Evol. 2017;34 : 654–665. doi: 10.1093/molbev/msw264 28025279
14. Bewick AJ, Hofmeister BT, Powers RA, Mondo SJ, Grigoriev I V., James TY, et al. Diversity of cytosine methylation across the fungal tree of life. Nat Ecol Evol. 2019;3 : 479–490. doi: 10.1038/s41559-019-0810-9 30778188
15. de Mendoza A, Pflueger J, Lister R. Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family. Genome Res. 2019;29 : 1277–1286. doi: 10.1101/gr.243774.118 31239280
16. de Mendoza A, Hatleberg WL, Pang K, Leininger S, Bogdanovic O, Pflueger J, et al. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nat Ecol Evol. 2019;3 : 1464–1473. doi: 10.1038/s41559-019-0983-2 31558833
17. Keller TE, Han P, Yi S V. Evolutionary transition of promoter and gene body DNA methylation across invertebrate-vertebrate boundary. Mol Biol Evol. 2016;33 : 1019–1028. doi: 10.1093/molbev/msv345 26715626
18. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, et al. Functional CpG methylation system in a social insect. Science (80-). 2006;314 : 645–647. doi: 10.1126/science.1135213 17068262
19. Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. Keller L, editor. PLoS Biol. 2010;8: e1000506. doi: 10.1371/journal.pbio.1000506 21072239
20. Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, et al. Single base–resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol. 2010;28 : 516–520. doi: 10.1038/nbt.1626 20436463
21. Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK, et al. Function and Evolution of DNA Methylation in Nasonia vitripennis. PLoS Genet. 2013;9. doi: 10.1371/journal.pgen.1003872 24130511
22. Bonasio R, Li Q, Lian J, Mutti NS, Jin L, Zhao H, et al. Genome-wide and caste-specific DNA methylomes of the ants camponotus floridanus and harpegnathos saltator. Curr Biol. 2012;22 : 1755–1764. doi: 10.1016/j.cub.2012.07.042 22885060
23. Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. The genome of the crustacean parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. Elife. 2016;5. doi: 10.7554/eLife.20062.001
24. Kvist J, Gonçalves Athanàsio C, Shams Solari O, Brown JB, Colbourne JK, Pfrender ME, et al. Pattern of DNA Methylation in Daphnia: Evolutionary Perspective. Genome Biol Evol. 2018;10 : 1988–2007. doi: 10.1093/gbe/evy155 30060190
25. Liu S, Aagaard A, Bechsgaard J, Bilde T. DNA Methylation Patterns in the Social Spider, Stegodyphus dumicola. Genes (Basel). 2019;10 : 137. doi: 10.3390/genes10020137 30759892
26. Gatzmann F, Falckenhayn C, Gutekunst J, Hanna K, Raddatz G, Carneiro VC, et al. The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenetics and Chromatin. 2018;11. doi: 10.1186/s13072-018-0229-6 30286795
27. Wu P, Jie W, Shang Q, Annan E, Jiang X, Hou C, et al. DNA methylation in silkworm genome may provide insights into epigenetic regulation of response to Bombyx mori cypovirus infection. Sci Rep. 2017;7 : 16013. doi: 10.1038/s41598-017-16357-7 29167521
28. Bewick AJ, Zhang Y, Wendte JM, Zhang X, Schmitz RJ. Evolutionary and experimental loss of gene body methylation and its consequence to gene expression. G3 Genes, Genomes, Genet. 2019;9 : 2441–2445. doi: 10.1534/g3.119.400365 31147389
29. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh C - L, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311 : 395–8. doi: 10.1126/science.1120976 16424344
30. Falckenhayn C, Boerjan B, Raddatz G, Frohme M, Schoofs L, Lyko F. Characterization of genome methylation patterns in the desert locust Schistocerca gregaria. J Exp Biol. 2013;216 : 1423–9. doi: 10.1242/jeb.080754 23264491
31. Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science (80-). 2011;331 : 1036–1040. doi: 10.1126/science.1195380 21163962
32. Catania S, Dumesic PA, Pimentel H, Nasif A, Stoddard CI, Burke JE, et al. Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase. Cell. 2020;180 : 263–277.e20. doi: 10.1016/j.cell.2019.12.012 31955845
33. Hunt BG, Glastad KM, Yi S V., Goodisman MAD. Patterning and Regulatory Associations of DNA Methylation Are Mirrored by Histone Modifications in Insects. Genome Biol Evol. 2013;5 : 591–598. doi: 10.1093/gbe/evt030 23458712
34. Bewick AJ, Sanchez Z, Mckinney EC, Moore AJ, Moore PJ, Schmitz RJ. Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus. Epigenetics Chromatin. 2019;12 : 6. doi: 10.1186/s13072-018-0246-5 30616649
35. Corrales M, Rosado A, Cortini R, Van Arensbergen J, Van Steensel B, Filion GJ. Clustering of Drosophila housekeeping promoters facilitates their expression. Genome Res. 2017;27 : 1153–1161. doi: 10.1101/gr.211433.116 28420691
36. Chodavarapu RK, Feng S, Bernatavichute Y V., Chen P-Y, Stroud H, Yu Y, et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010;466 : 388–392. doi: 10.1038/nature09147 20512117
37. Zhang L, Xie WJ, Liu S, Meng L, Gu C, Gao YQ. DNA Methylation Landscape Reflects the Spatial Organization of Chromatin in Different Cells. Biophys J. 2017;113 : 1395–1404. doi: 10.1016/j.bpj.2017.08.019 28978434
38. Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative analysis of metazoan chromatin organization. Nature. 2014;512 : 449–452. doi: 10.1038/nature13415 25164756
39. Haberle V, Lenhard B. Promoter architectures and developmental gene regulation. Seminars in Cell and Developmental Biology. 2016. doi: 10.1016/j.semcdb.2016.01.014 26783721
40. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006;38 : 626–635. doi: 10.1038/ng1789 16645617
41. Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, et al. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 2011;21 : 182–92. doi: 10.1101/gr.112466.110 21177961
42. Lenhard B, Sandelin A, Carninci P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet. 2012;13 : 233–245. doi: 10.1038/nrg3163 22392219
43. Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, et al. Two independent transcription initiation codes overlap on vertebrate core promoters. Nature. 2014;507 : 381–385. doi: 10.1038/nature12974 24531765
44. Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S, Kapopoulou A, et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2012;2 : 766–73. doi: 10.1016/j.celrep.2012.08.043 23041315
45. Dixon GB, Bay LK, Matz M V. Evolutionary Consequences of DNA Methylation in a Basal Metazoan. Mol Biol Evol. 2016;33 : 2285–2293. doi: 10.1093/molbev/msw100 27189563
46. Takuno S, Gaut BS. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc Natl Acad Sci U S A. 2013;110 : 1797–1802. doi: 10.1073/pnas.1215380110 23319627
47. Takuno S, Ran JH, Gaut BS. Evolutionary patterns of genic DNA methylation vary across land plants. Nat Plants. 2016;2 : 1–7. doi: 10.1038/NPLANTS.2015.222 27249194
48. Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. Current Opinion in Plant Biology. 2017. doi: 10.1016/j.pbi.2016.12.007 28258985
49. Seymour DK, Gaut BS. Phylogenetic Shifts in Gene Body Methylation Correlate with Gene Expression and Reflect Trait Conservation. Purugganan M, editor. Mol Biol Evol. 2020;37 : 31–43. doi: 10.1093/molbev/msz195 31504743
50. Bewick AJ, Ji L, Niederhuth CE, Willing EM, Hofmeister BT, Shi X, et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci U S A. 2016;113 : 9111–9116. doi: 10.1073/pnas.1604666113 27457936
51. Muyle A, Gaut BS. Loss of Gene Body Methylation in Eutrema salsugineum Is Associated with Reduced Gene Expression. Purugganan M, editor. Mol Biol Evol. 2019;36 : 155–158. doi: 10.1093/molbev/msy204 30398664
52. Zilberman D. An evolutionary case for functional gene body methylation in plants and animals. Genome Biol. 2017;18 : 87. doi: 10.1186/s13059-017-1230-2 28486944
53. Morselli M, Pastor WA, Montanini B, Nee K, Ferrari R, Fu K, et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. Elife. 2015;4. doi: 10.7554/eLife.06205 25848745
54. Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature. 2015;520 : 243–247. doi: 10.1038/nature14176 25607372
55. Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol. 2009;16 : 990–995. doi: 10.1038/nsmb.1659 19684600
56. Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcárcel J, et al. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol. 2009;16 : 996–1001. doi: 10.1038/nsmb.1658 19684599
57. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12 : 59–60. doi: 10.1038/nmeth.3176 25402007
58. Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol. 2000;17 : 540–552. doi: 10.1093/oxfordjournals.molbev.a026334 10742046
59. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30 : 1236–1240. doi: 10.1093/bioinformatics/btu031 24451626
60. Lagesen K, Hallin P, Rødland EA, Stærfeldt H - H, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35 : 3100–3108. doi: 10.1093/nar/gkm160 17452365
61. Lowe TM, Eddy SR. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997;25 : 955–964. doi: 10.1093/nar/25.5.955 9023104
62. Galbraith DA, Yang X, Niño EL, Yi S, Grozinger C. Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera). Schneider DS, editor. PLOS Pathog. 2015;11: e1004713. doi: 10.1371/journal.ppat.1004713 25811620
63. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27 : 1571–1572. doi: 10.1093/bioinformatics/btr167 21493656
64. Barturen G, Rueda A, Oliver JL, Hackenberg M. MethylExtract: High-Quality methylation maps and SNV calling from whole genome bisulfite sequencing data. F1000Research. 2014;2 : 217. doi: 10.12688/f1000research.2-217.v2 24627790
65. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3 : 217–223. doi: 10.1111/j.2041-210X.2011.00169.x
66. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30. doi: 10.1093/molbev/mst010 23329690
67. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29 : 1969–1973. doi: 10.1093/molbev/mss075 22367748
68. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346 : 763–7. doi: 10.1126/science.1257570 25378627
69. Hadfield JD. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. J Stat Softw. 2010;33 : 1–22. doi: 10.18637/jss.v033.i02 20808728
70. Lewis SH, Quarles KA, Yang Y, Tanguy M, Frézal L, Smith SA, et al. Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nat Ecol Evol. 2018;2 : 174–181. doi: 10.1038/s41559-017-0403-4 29203920
71. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14: R36. doi: 10.1186/gb-2013-14-4-r36 23618408
72. Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M. Detecting expressed genes using CAGE. Methods Mol Biol. 2014. doi: 10.1007/978-1-4939-0805-9_7 24927836
73. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Meth. 2012;9 : 357–359. Available: http://dx.doi.org/10.1038/nmeth.1923
74. Haberle V, Forrest ARR, Hayashizaki Y, Carninci P, Lenhard B. CAGEr: Precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res. 2015. doi: 10.1093/nar/gkv054 25653163
Článek Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolismČlánek GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiationČlánek The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtiiČlánek yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 6- Ukažte mi, jak kašlete, a já vám řeknu, co vám je
- Test BioCog: 10 minut k orientaci v kognitivním stavu pacienta
- VIDEO: Terénní tým ECMO zachraňuje životy přímo v pražských ulicích
- Alkohol, zima a léky − sezónní rizika interakcí
- „Jednohubky“ z výzkumu 2025/40 – vánoční a silvestrovská porce
-
Všechny články tohoto čísla
- Nitric oxide mediates neuro-glial interaction that shapes Drosophila circadian behavior
- Duplication and divergence of the retrovirus restriction gene Fv1 in Mus caroli allows protection from multiple retroviruses
- JMJD6 participates in the maintenance of ribosomal DNA integrity in response to DNA damage
- Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Regulation of olfactory-based sex behaviors in the silkworm by genes in the sex-determination cascade
- Osteocalcin promotes bone mineralization but is not a hormone
- A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5
- Integrins regulate epithelial cell shape by controlling the architecture and mechanical properties of basal actomyosin networks
- Age-of-onset information helps identify 76 genetic variants associated with allergic disease
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure
- Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves
- Transcriptomic stratification of late-onset Alzheimer's cases reveals novel genetic modifiers of disease pathology
- Alpha- and beta-adrenergic octopamine receptors in muscle and heart are required for Drosophila exercise adaptations
- Identification of Clec4b as a novel regulator of bystander activation of auto-reactive T cells and autoimmune disease
- Exclusive breastfeeding can attenuate body-mass-index increase among genetically susceptible children: A longitudinal study from the ALSPAC cohort
- Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development
- BRM-SWI/SNF chromatin remodeling complex enables functional telomeres by promoting co-expression of TRF2 and TRF1
- MYO5B mutations in pheochromocytoma/paraganglioma promote cancer progression
- Genetic analysis of osteoblast activity identifies Zbtb40 as a regulator of osteoblast activity and bone mass
- In vivo modeling of metastatic human high-grade serous ovarian cancer in mice
- GLI3 resides at the intersection of hedgehog and androgen action to promote male sex differentiation
- The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii
- An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons
- BK channel density is regulated by endoplasmic reticulum associated degradation and influenced by the SKN-1A/NRF1 transcription factor
- Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3′UTR intron-containing NMD targets
- Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
- Control of mRNA translation by dynamic ribosome modification
- ROS regulation of RAS and vulva development in Caenorhabditis elegans
- The kinase Isr1 negatively regulates hexosamine biosynthesis in S. cerevisiae
- yippee like 3 (ypel3) is a novel gene required for myelinating and perineurial glia development
- Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis
- Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections
- The cohesin loader SCC2 contains a PHD finger that is required for meiosis in land plants
- Evolution of Salmonella enterica serotype Typhimurium driven by anthropogenic selection and niche adaptation
- Estimation of non-null SNP effect size distributions enables the detection of enriched genes underlying complex traits
- Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity
- A Bayesian method to estimate variant-induced disease penetrance
- NatB regulates Rb mutant cell death and tumor growth by modulating EGFR/MAPK signaling through the N-end rule pathways
- Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods
- Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae
- Phylogenetic background and habitat drive the genetic diversification of Escherichia coli
- VolcanoFinder: Genomic scans for adaptive introgression
- Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson’s disease through mitochondrial dysfunction
- Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish)
- Suppression of class I compensated cell enlargement by xs2 mutation is mediated by salicylic acid signaling
- Protein-protein interaction network controlling establishment and maintenance of switchable cell polarity
- Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes
- Regulation of epithelial integrity and organ growth by Tctp and Coracle in Drosophila
- The brachyceran de novo gene PIP82, a phosphorylation target of aPKC, is essential for proper formation and maintenance of the rhabdomeric photoreceptor apical domain in Drosophila
- Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis
- AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization
- c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae
- All three mammalian MutL complexes are required for repeat expansion in a mouse cell model of the Fragile X-related disorders
- Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase
- The facts of the matter: What is a hormone?
- Lack of reproducibility in osteocalcin-deficient mice
- Independent validation of experimental results requires timely and unrestricted access to animal models and reagents
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Osteocalcin promotes bone mineralization but is not a hormone
- Cancer-associated mutations in the iron-sulfur domain of FANCJ affect G-quadruplex metabolism
- Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis
- Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání