-
Články
Top novinky
Reklama- Vzdělávání
- Časopisy
Top články
Nové číslo
- Témata
Top novinky
Reklama- Kongresy
- Videa
- Podcasty
Nové podcasty
Reklama- Kariéra
Doporučené pozice
Reklama- Praxe
Top novinky
ReklamaE2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish
Autoři: Haibo Xie aff001; Yunsi Kang aff001; Shuo Wang aff001; Pengfei Zheng aff001; Zhe Chen aff001; Sudipto Roy aff004; Chengtian Zhao aff001
Působiště autorů: Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China aff001; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China aff002; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China aff003; Institute of Molecular and Cell Biology, Singapore, Singapore aff004; Department of Biological Sciences, National University of Singapore, Singapore, Singapore aff005; Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore aff006
Vyšlo v časopise: E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genet 16(3): e32767. doi:10.1371/journal.pgen.1008655
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008655Souhrn
E2f5 is a member of the E2f family of transcription factors that play essential roles during many cellular processes. E2f5 was initially characterized as a transcriptional repressor in cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic and post-embryonic development remain incompletely investigated. Here, we report that zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) differentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants, spermatogenesis is arrested at the zygotene stage due to homologous recombination (HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;tp53 double mutants rescued ovarian development, although oocytes generated from the double mutants were still abnormal, characterized by aberrant distribution of nucleoli. Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5 mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demonstrate that ion transporting principal cells in the pronephric ducts, which remain intercalated with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 activates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as well as motile cilia differentiation by the neighboring principal cells. Taken together, our data suggest that E2f5 can function as a versatile transcriptional activator and identify novel roles of the protein in spermatogenesis as well as MCC differentiation during zebrafish development.
Klíčová slova:
Cell differentiation – Cell motility – Cilia – Embryos – Gene expression – Spermatogenesis – Testes – Zebrafish
Zdroje
1. DeGregori J., Johnson D. G., Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Current molecular medicine 6, 739–748 (2006). doi: 10.2174/1566524010606070739 17100600
2. Chen H. Z., Tsai S. Y., Leone G., Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nature reviews. Cancer 9, 785–797 (2009). doi: 10.1038/nrc2696 19851314
3. Dick F. A., Goodrich D. W., Sage J., Dyson N. J., Non-canonical functions of the RB protein in cancer. Nature reviews. Cancer 18, 442–451 (2018).
4. Ertosun M. G., Hapil F. Z., Osman Nidai O., E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine & growth factor reviews 31, 17–25 (2016).
5. Attwooll C., Lazzerini Denchi E., Helin K., The E2F family: specific functions and overlapping interests. The EMBO journal 23, 4709–4716 (2004). doi: 10.1038/sj.emboj.7600481 15538380
6. Humbert P. O. et al., E2F4 is essential for normal erythrocyte maturation and neonatal viability. Molecular cell 6, 281–291 (2000). doi: 10.1016/s1097-2765(00)00029-0 10983976
7. Rempel R. E. et al., Loss of E2F4 activity leads to abnormal development of multiple cellular lineages. Molecular cell 6, 293–306 (2000). doi: 10.1016/s1097-2765(00)00030-7 10983977
8. Ruzhynsky V. A. et al., Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon. The Journal of neuroscience: the official journal of the Society for Neuroscience 27, 5926–5935 (2007).
9. Danielian P. S., Hess R. A., Lees J. A., E2f4 and E2f5 are essential for the development of the male reproductive system. Cell cycle 15, 250–260 (2016). doi: 10.1080/15384101.2015.1121350 26825228
10. Lindeman G. J. et al., A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes & development 12, 1092–1098 (1998).
11. Spassky N., Meunier A., The development and functions of multiciliated epithelia. Nature reviews. Molecular cell biology 18, 423–436 (2017). doi: 10.1038/nrm.2017.21 28400610
12. Brooks E. R., Wallingford J. B., Multiciliated cells. Current biology: CB 24, R973–982 (2014). doi: 10.1016/j.cub.2014.08.047 25291643
13. Liu Y., Pathak N., Kramer-Zucker A., Drummond I. A., Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134, 1111–1122 (2007). doi: 10.1242/dev.02806 17287248
14. Mori M. et al., Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development 142, 258–267 (2015). doi: 10.1242/dev.116855 25564622
15. Tsao P. N. et al., Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136, 2297–2307 (2009). doi: 10.1242/dev.034884 19502490
16. Marcet B. et al., Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nature cell biology 13, 693–699 (2011). doi: 10.1038/ncb2241 21602795
17. Deblandre G. A., Wettstein D. A., Koyano-Nakagawa N., Kintner C., A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728 (1999). 10518489
18. Ma M., Jiang Y. J., Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS genetics 3, e18 (2007). doi: 10.1371/journal.pgen.0030018 17257056
19. Zhou F. et al., Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program. Current biology: CB 25, 3267–3273 (2015). doi: 10.1016/j.cub.2015.10.062 26778655
20. Terre B. et al., GEMC1 is a critical regulator of multiciliated cell differentiation. The EMBO journal 35, 942–960 (2016). doi: 10.15252/embj.201592821 26933123
21. Arbi M. et al., GemC1 controls multiciliogenesis in the airway epithelium. EMBO reports 17, 400–413 (2016). doi: 10.15252/embr.201540882 26882546
22. Stubbs J. L., Vladar E. K., Axelrod J. D., Kintner C., Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nature cell biology 14, 140–147 (2012). doi: 10.1038/ncb2406 22231168
23. Chong Y. L., Zhang Y., Zhou F., Roy S., Distinct requirements of E2f4 versus E2f5 activity for multiciliated cell development in the zebrafish embryo. Developmental biology 443, 165–172 (2018). doi: 10.1016/j.ydbio.2018.09.013 30218642
24. Ma L., Quigley I., Omran H., Kintner C., Multicilin drives centriole biogenesis via E2f proteins. Genes & development 28, 1461–1471 (2014).
25. Mori M. et al., Cytoplasmic E2f4 forms organizing centres for initiation of centriole amplification during multiciliogenesis. Nature communications 8, 15857 (2017). doi: 10.1038/ncomms15857 28675157
26. Zhao H. et al., The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nature cell biology 15, 1434–1444 (2013). doi: 10.1038/ncb2880 24240477
27. Wang Y., Copenhaver G. P., Meiotic Recombination: Mixing It Up in Plants. Annu Rev Plant Biol 69, 577–609 (2018). doi: 10.1146/annurev-arplant-042817-040431 29489392
28. Neale M. J., Keeney S., Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006). doi: 10.1038/nature04885 16838012
29. Sehorn M. G., Sigurdsson S., Bussen W., Unger V. M., Sung P., Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004). doi: 10.1038/nature02563 15164066
30. Cloud V., Chan Y. L., Grubb J., Budke B., Bishop D. K., Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis. Science 337, 1222–1225 (2012). doi: 10.1126/science.1219379 22955832
31. Da Ines O. et al., Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role. PLoS genetics 9, e1003787 (2013). doi: 10.1371/journal.pgen.1003787 24086145
32. Bisig C. G. et al., Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS genetics 8, e1002701 (2012). doi: 10.1371/journal.pgen.1002701 22761579
33. Saito K., Siegfried K. R., Nusslein-Volhard C., Sakai N., Isolation and cytogenetic characterization of zebrafish meiotic prophase I mutants. Dev Dyn 240, 1779–1792 (2011). doi: 10.1002/dvdy.22661 21594953
34. Mahadevaiah S. K. et al., Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27, 271–276 (2001). doi: 10.1038/85830 11242108
35. Rodriguez-Mari A. et al., Roles of brca2 (fancd1) in oocyte nuclear architecture, gametogenesis, gonad tumors, and genome stability in zebrafish. PLoS genetics 7, e1001357 (2011). doi: 10.1371/journal.pgen.1001357 21483806
36. Shive H. R. et al., brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proc Natl Acad Sci U S A 107, 19350–19355 (2010). doi: 10.1073/pnas.1011630107 20974951
37. Zhao W., Wiese C., Kwon Y., Hromas R., Sung P., The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 88, 221–245 (2019). doi: 10.1146/annurev-biochem-013118-111058 30917004
38. Sun Y., McCorvie T. J., Yates L. A., Zhang X., Structural basis of homologous recombination. Cell Mol Life Sci 77, 3–18 (2020). doi: 10.1007/s00018-019-03365-1 31748913
39. Kagawa W., Kurumizaka H., From meiosis to postmeiotic events: uncovering the molecular roles of the meiosis-specific recombinase Dmc1. FEBS J 277, 590–598 (2010). doi: 10.1111/j.1742-4658.2009.07503.x 20015079
40. Chen J. et al., Disruption of dmc1 Produces Abnormal Sperm in Medaka (Oryzias latipes). Sci Rep 6, 30912 (2016). doi: 10.1038/srep30912 27480068
41. Drummond I. A., Davidson A. J., Zebrafish kidney development. Methods Cell Biol 100, 233–260 (2010). doi: 10.1016/B978-0-12-384892-5.00009-8 21111220
42. Zhao C., Malicki J., Genetic defects of pronephric cilia in zebrafish. Mech Dev 124, 605–616 (2007). doi: 10.1016/j.mod.2007.04.004 17576052
43. Nguyen A. T. et al., An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Disease models & mechanisms 5, 63–72 (2012).
44. Kang Y., Xie H., Zhao C., Ankrd45 Is a Novel Ankyrin Repeat Protein Required for Cell Proliferation. Genes (Basel) 10 (2019).
45. Kossack M. E., Draper B. W., Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Curr Top Dev Biol 134, 119–149 (2019). doi: 10.1016/bs.ctdb.2019.02.004 30999973
46. Rodriguez-Mari A. et al., Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS genetics 6, e1001034 (2010). doi: 10.1371/journal.pgen.1001034 20661450
47. Lu H. et al., Mcidas mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals. Development 146 (2019).
Článek Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesisČlánek What is ancestry?Článek Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress
Článek vyšel v časopisePLOS Genetics
Nejčtenější tento týden
2020 Číslo 3- Nakupování jako nemoc. Jaké jsou její příčiny a možnosti terapie?
- Co dokáže ultrazvuková přilba pro neinvazivní stimulaci mozku
- S prof. Vladimírem Paličkou o racionální suplementaci kalcia a vitaminu D v každodenní praxi
- Nostiriazyn – spolehlivá 1. volba u nekomplikovaných infekcí močových cest
- 4× stručně a aktuálně k možnostem preventivních strategií – „jednohubky“ z klinického výzkumu 2026/2
-
Všechny články tohoto čísla
- Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data
- Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering
- Drosophila insulin-like peptide 2 mediates dietary regulation of sleep intensity
- The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis
- RNA Polymerase II CTD phosphatase Rtr1 fine-tunes transcription termination
- Modeling cancer genomic data in yeast reveals selection against ATM function during tumorigenesis
- The Caenorhabditis elegans homolog of the Evi1 proto-oncogene, egl-43, coordinates G1 cell cycle arrest with pro-invasive gene expression during anchor cell invasion
- Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency
- The Lid/KDM5 histone demethylase complex activates a critical effector of the oocyte-to-zygote transition
- Tracking human population structure through time from whole genome sequences
- FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas
- Cell cycle transcriptomics of Capsaspora provides insights into the evolution of cyclin-CDK machinery
- The emerging role of transcriptional regulation in the oocyte-to-zygote transition
- Murine cytomegalovirus infection exacerbates complex IV deficiency in a model of mitochondrial disease
- The influence of rare variants in circulating metabolic biomarkers
- The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation
- Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria
- Histone H4 dosage modulates DNA damage response in the pathogenic yeast Candida glabrata via homologous recombination pathway
- What is ancestry?
- A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions
- ESCRTing proteasomes to the lysosome
- Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome
- Autophagy compensates for defects in mitochondrial dynamics
- The conserved regulatory basis of mRNA contributions to the early Drosophila embryo differs between the maternal and zygotic genomes
- Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages
- A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters
- A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage
- Non-lethal exposure to H2O2 boosts bacterial survival and evolvability against oxidative stress
- GLP-1 Notch—LAG-1 CSL control of the germline stem cell fate is mediated by transcriptional targets lst-1 and sygl-1
- Recessive missense LAMP3 variant associated with defect in lamellar body biogenesis and fatal neonatal interstitial lung disease in dogs
- Global mistranslation increases cell survival under stress in Escherichia coli
- E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish
- A putative silencer variant in a spontaneous canine model of retinitis pigmentosa
- Evidence of defined temporal expression patterns that lead a gram-negative cell out of dormancy
- Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia
- DNA methylation and cis-regulation of gene expression by prostate cancer risk SNPs
- Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin
- Girdin is a component of the lateral polarity protein network restricting cell dissemination
- Germ cell-intrinsic effects of sex chromosomes on early oocyte differentiation in mice
- A Snf1-related nutrient-responsive kinase antagonizes endocytosis in yeast
- Light affects tissue patterning of the hypocotyl in the shade-avoidance response
- Correction: Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes
- Minority-centric meta-analyses of blood lipid levels identify novel loci in the Population Architecture using Genomics and Epidemiology (PAGE) study
- pH-dependent activation of cytokinesis modulates Escherichia coli cell size
- Quantitative genetic analysis deciphers the impact of cis and trans regulation on cell-to-cell variability in protein expression levels
- WHIMP links the actin nucleation machinery to Src-family kinase signaling during protrusion and motility
- Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation
- Pleiotropy facilitates local adaptation to distant optima in common ragweed (Ambrosia artemisiifolia)
- Correction: Mck1 kinase is a new player in the DNA damage checkpoint pathway
- Correction: Co-Evolution of Mitochondrial tRNA Import and Codon Usage Determines Translational Efficiency in the Green Alga Chlamydomonas
- PLOS Genetics
- Archiv čísel
- Aktuální číslo
- Informace o časopisu
Nejčtenější v tomto čísle- Evidence of defined temporal expression patterns that lead a gram-negative cell out of dormancy
- The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis
- A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions
- Correction: Mck1 kinase is a new player in the DNA damage checkpoint pathway
Kurzy
Zvyšte si kvalifikaci online z pohodlí domova
Autoři: prof. MUDr. Vladimír Palička, CSc., Dr.h.c., doc. MUDr. Václav Vyskočil, Ph.D., MUDr. Petr Kasalický, CSc., MUDr. Jan Rosa, Ing. Pavel Havlík, Ing. Jan Adam, Hana Hejnová, DiS., Jana Křenková
Autoři: MUDr. Irena Krčmová, CSc.
Autoři: MDDr. Eleonóra Ivančová, PhD., MHA
Autoři: prof. MUDr. Eva Kubala Havrdová, DrSc.
Všechny kurzyPřihlášení#ADS_BOTTOM_SCRIPTS#Zapomenuté hesloZadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.
- Vzdělávání