Genome-Wide Association Study Using Extreme Truncate Selection
Identifies Novel Genes Affecting Bone Mineral Density and Fracture
Risk


Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low

bone mineral density (BMD) is a major predisposing factor to fracture and is

known to be highly heritable. Site-, gender-, and age-specific genetic effects

on BMD are thought to be significant, but have largely not been considered in

the design of genome-wide association studies (GWAS) of BMD to date. We report

here a GWAS using a novel study design focusing on women of a specific age

(postmenopausal women, age 55–85 years), with either extreme high or low

hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0,

n = 1055, or −4.0 to −1.5,

n = 900), with replication in cohorts of women drawn from

the general population (n = 20,898). The study replicates

21 of 26 known BMD–associated genes. Additionally, we report suggestive

association of a further six new genetic associations in or around the genes

CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and

SOX4, with replication in two independent datasets. A novel

mouse model with a loss-of-function mutation in GALNT3 is also

reported, which has high bone mass, supporting the involvement of this gene in

BMD determination. In addition to identifying further genes associated with BMD,

this study confirms the efficiency of extreme-truncate selection designs for

quantitative trait association studies.


Published in the journal: . PLoS Genet 7(4): e32767. doi:10.1371/journal.pgen.1001372
Category: Research Article
doi: 10.1371/journal.pgen.1001372

Summary

Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low

bone mineral density (BMD) is a major predisposing factor to fracture and is

known to be highly heritable. Site-, gender-, and age-specific genetic effects

on BMD are thought to be significant, but have largely not been considered in

the design of genome-wide association studies (GWAS) of BMD to date. We report

here a GWAS using a novel study design focusing on women of a specific age

(postmenopausal women, age 55–85 years), with either extreme high or low

hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0,

n = 1055, or −4.0 to −1.5,

n = 900), with replication in cohorts of women drawn from

the general population (n = 20,898). The study replicates

21 of 26 known BMD–associated genes. Additionally, we report suggestive

association of a further six new genetic associations in or around the genes

CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and

SOX4, with replication in two independent datasets. A novel

mouse model with a loss-of-function mutation in GALNT3 is also

reported, which has high bone mass, supporting the involvement of this gene in

BMD determination. In addition to identifying further genes associated with BMD,

this study confirms the efficiency of extreme-truncate selection designs for

quantitative trait association studies.

Introduction

Osteoporotic fracture is a leading cause of morbidity and mortality in the community, particularly amongst the elderly. In 2004 ten million Americans were estimated to have osteoporosis, resulting in 1.5 million fractures per annum [1]. Hip fracture is associated with a one year mortality rate of 36% in men and 21% in women [2]; and the burden of disease of osteoporotic fractures overall is similar to that of colorectal cancer and greater than that of hypertension and breast cancer [3]. Bone mineral density (BMD) is strongly correlated with bone strength and fracture risk, and its measurement is widely used as a diagnostic tool in the assessment of fracture risk [4][6]. BMD is known to be highly heritable, with heritability assessed in both young and elderly twins, and in families, to be 60–90% [7][14]. Although the extent of covariance between BMD and fracture risk is uncertain, of the 26 genes associated with BMD at genome-wide significant levels to date, nine have been associated with fracture risk (reviewed in [15]), supporting the use of BMD as an intermediate phenotype in the search for genes associated with fracture risk.

There is considerable evidence from genetic studies in humans [12], [16], [17], and in mice [18], indicating that the genes that influence BMD at different sites, and in the different genders, overlap but are not identical. Thus far all genome-wide association studies (GWAS) of BMD have studied cohorts of a wide age range, and with one exception have included both men and women; when only women have been studied, both pre- and postmenopausal women have been included. Therefore, to identify genes involved in osteoporosis in the demographic at highest risk of osteoporotic fracture we have performed a GWAS in postmenopausal women selected on the basis of their hip BMD, and replicated the GWAS findings in a large cohort of adult women drawn from the general population.

Results

Considering markers previously reported as associated with BMD, our discovery dataset replicates previously associated SNPs in 21 of the 26 genes reported to date to have genome-wide significant associations (Table S6) (P<0.05, association in the same direction as initially reported, or, in the case of LRP5 and GPR177, with the next flanking SNP genotyped) [17], [21], [22], [23], [28], [32], [33], [34]. Replicated genes include ARHGAP1, CTNNB1, ESR1, FAM3C, FLJ42280, FOXL1, GPR177, HDAC5, JAG1, LRP5, MARK3, MEF2C, MEPE, OPG, RANK, RANKL, SOST, SOX6, SP7 (Osterix), STARD3NL and ZBTB40. Considering the combined Anglo-Australasian Osteoporosis Genetics Consortium (AOGC) and deCODE/TwinsUK/Rotterdam cohorts, 97 SNPs from six loci achieved P<5×10−8 at the femoral neck (FN), of which four had previously been reported (FLJ42280, MEF2C, SOX6, ZBTB40). At the lumbar spine (LS), six SNPs from two known loci (RANKL, OPG) achieved P<5×10−8. No support was seen for previously reported associations involving SNPs in ADAMTS18, CRHR1, DCDC5, MHC, or SBTBN1 (P>0.05).

This study also identifies and replicates two novel loci with confirmed association with BMD in GALNT3 (MIM: 601756) and at chromosome 6q22 near RSPO3 (MIM: 610574), and provides strong evidence of a further four BMD-associated loci (CLCN7 (MIM: 602727), IBSP (MIM: 147563), LTBP3 (MIM: 602090), SOX4 (MIM: 184430)) (Table 1). Although these did not achieve ‘genome-wide significance’ in the discovery set alone, they achieved P-values in the AOGC-discovery cohort of P<10−4, and support in the AOGC-replication cohort, TwinsUK, Rotterdam and deCODE cohorts; and all have additional evidence supporting their role in bone. Support was also seen for TGFBR3 (MIM: 600742), a gene previously reported to have suggestive association with BMD [33].

Tab. 1. Findings for novel replicated associations.
Findings for novel replicated associations.

GALNT3

SNPs at chromosome 2q24, in and around GALNT3, achieved near genome-wide significance in our discovery cohort (peak P-value rs1863196, total hip (TH) P = 2.3×10−5; LS P = 0.037) (Figure 1A). This SNP was not typed or imputed by either the Rotterdam or the TwinsUK cohorts, but a nearby SNP showed strong association in both AOGC and the combined replication cohorts (rs6710518; AOGC discovery, TH P = 6.9×10−5; combined replication sets, FN P = 2.7×10−7). In the combined datasets the finding achieved genome-wide significance at the FN (P = 1.7×10−10). Strong association was also seen with this SNP at LS (P = 7.5×10−5). Another marker within GALNT3, rs4667492, was also associated with fracture risk, including vertebral fractures (OR = 0.89; 95%CI = 0.80–0.99; P = 0.032) and overall low trauma fractures (OR = 0.92; 95%CI = 0.85–0.99; P = 0.024).

SNP association plots for BMD-associated regions.
Fig. 1. SNP association plots for BMD-associated regions.

We have recently identified a mouse with an N-ethyl-N-nitrosourea induced loss-of-function GALNT3 mutation (Trp589Arg), that develops hyperphosphataemia with extraskeletal calcium deposition, and hence represents a model for FTC [35]. To establish further the association of GALNT3 and BMD, we determined BMD in these GALNT3 mutant mice. This revealed that homozygous (−/−) GALNT3 mutant male and female adult mice had a higher areal BMD than their wild-type (+/+) litter mates, with heterozygous (+/−) mice having intermediate BMD (Figure 2). This loss-of-function GALNT3 mutation is predicted to lead to a reduced glycosylation of FGF23, which increases its breakdown and leads to reduced serum FGF23 concentrations [35].

Fig. 2.

RSPO3

A novel genome-wide significant association was also seen at markers on chromosome 6q22-23 (Figure 1B). In the combined dataset, marker rs13204965 achieved genome-wide significance at this locus at the FN (P = 2.2×10−9), with strong support in both the AOGC discovery set, and the combined replication sets (AOGC-discovery, TH P = 2.1×10−4; combined replication P = 3.5×10−5). Strong association was also seen with LS BMD (rs13204965 P = 0.00067). The peak of association at this locus lies within a cDNA fragment, AK127472. The nearest gene, RSPO3 (R-spondin-3), is 275 kb telomeric of the strongest associated SNP, but is within the associated linkage disequilibrium region (Figure 1B).

CLCN7

Association was observed at chromosome 16p13 with SNPs in and around CLCN7, which encodes a Cl/H+ antiporter expressed primarily in osteoclasts, and critical to lysosomal acidification, an essential process in bone resorption. Peak association at this locus was seen with SNP rs13336428 in the discovery set (TH P = 7.0×10−4; LS P = 0.028) (Figure S3A), which was confirmed in the replication set (FN P = 3.6×10−5; LS P = 0.00012), achieving P = 1.7×10−6 at the FN and 1.2×10−5 at LS in the overall cohort. Association has previously been reported between two SNPs in exon 15 of CLCN7 (rs12926089, rs12926669) and FN BMD (P = 0.001–0.003) [36]; no association was seen with either of those SNPs in the current study (P>0.4 at FN and LS).

IBSP

Association was observed with SNPs in IBSP (integrin-binding bone sialoprotein) (Figure S3B), encoded at chromosome 4q22, a gene which has previously had suggestive association reported with BMD in two studies (rs1054627, Styrkarrsdottir et al P = 4.6×10−5 [22]; Koller et al P = 1.5×10−4 [37]). In the current study, moderate association was observed in the discovery set with the same SNP as previously reported (rs1054627, AOGC discovery TH, P = 6.6×10−5), with support in the replication set and strong association overall (FN combined replication P = 9.2×10−5; FN overall association P = 7.6×10−7). Nominal association was observed at LS (rs1054627, P = 0.019).

LTBP3

Association with BMD was also seen at chromosome 11p13, with SNP rs1152620 achieving P = 4.4×10−5 (TH) in the discovery set, P = 0.0051 (FN) in the replication set, and P = 3.6×10−4 overall (Figure S3C). This SNP was also nominally associated with LS BMD in the discovery set (P = 0.041). The nearest gene to this locus is LTBP3 (latent transforming growth factor beta binding protein 3), which is located 292 kb q-telomeric of rs1152620.

SOX4

At chromosome 6p22, SNPs in and around SOX4 (Sex determining region Y box 4) were moderately associated with BMD in our discovery set (most significant association rs9466056, TH P = 5.3×10−4; LS P = 0.0036) (Figure S3D), with support at the hip and LS in the replication set (FN P = 0.00013, LS P = 0.013), achieving association overall with P = 2.6×10−7 (FN) and P = 0.00081 (LS).

Discussion

This study demonstrates convincing evidence of association with six genes with BMD variation, GALNT3, RSPO3, CLCN7, IBSP, LTBP3 and SOX4. Using a moderate sample size, the use of a novel study design also led to the confirmation of 21 of 26 known BMD-associations. This study thus demonstrates the power of extreme-truncate selection designs for association studies of quantitative traits.

GALNT3 encodes N-acetylgalactosaminyltransferase 3, an enzyme involved in 0-glycosylation of serine and threonine residues. Mutations of GALNT3 are known to cause familial tumoral calcinosis (FTC, OMIM 2111900) [38] and hyperostosis-hyperphosphataemia syndrome (HOHP, OMIM 610233) [39]. FTC is characterised by hyperphosphataemia in association with the deposition of calcium phosphate crystals in extraskeletal tissues; whereas in HOHP, hyperphosphataemia is associated with recurrent painful long bone swelling and radiographic evidence of periosteal reaction and cortical hyperostosis. FGF23 mutations associated with FTC cause hyperphosphataemia through effects on expression of the sodium-phosphate co-transporter in the kidney and small intestine, and through increased activation of vitamin D due to increased renal expression of CYP27B1 (25-hydroxyvitamin-D 1 alpha hydroxylase) [40]. It is unclear whether FGF23 has direct effects on the skeleton or if its effects are mediated through its effects on serum phosphate and vitamin D levels. FGF23 signals via a complex of an FGF receptor (FGFR1(IIIc)) and Klotho [41]; mice with a loss-of-function mutation in Klotho develop osteoporosis amongst other abnormalities, and modest evidence of association of Klotho with BMD has been reported in several studies [42], [43], [44], [45]. We saw no association with polymorphisms in Klotho and BMD in the current study (P>0.05 for all SNPs in and surrounding Klotho). To our knowledge, this finding is the first demonstration in humans that genetic variants in the FGF23 pathway are associated with any common human disease.

RSPO3 is one of four members of the R-spondin family (R-spondin-1 to −4), which are known to activate the Wnt pathway, particularly through effects on LRP6, itself previously reported to be BMD-associated [46], [47]. LRP6 is inhibited by the proteins Kremen and DKK1, which combine to induce endocytosis of LRP6, reducing its cell surface levels. R-spondin family members have been shown to disrupt DKK1-dependent association of LRP6 and Kremen, thereby releasing LRP6 from this inhibitory pathway [48]. R-spondin-4 mutations cause anonychia (absence or severe hypoplasia of all fingernails and toenails, OMIM 206800) [49]. No human disease has been associated with R-spondin-3, and knockout of R-spondin-3 in mice is embryonically lethal due to defective placental development [50].

Mutations of CLCN7 cause a family of osteopetroses of differing age of presentation and severity, including infantile malignant CLCN7-related recessive osteopetrosis (ARO), intermediate autosomal osteopetrosis (IAO), and autosomal dominant osteopetrosis type II (ADOII, Albers-Schoenberg disease). These conditions are characterized by expanded, dense bones, with markedly reduced bone resorption. Our data support associations of polymorphisms at this locus with BMD variation in the population.

IBSP is a major non-collagenous bone matrix protein involved in calcium and hydroxyapatite binding, and is thought to play a role in cell-matrix interactions through RGD motifs in its amino acid sequence. IBSP is expressed in all major bone cells including osteoblasts, osteocytes and osteoclasts; and its expression is upregulated in osteoporotic bone [51]. IBSP knockout mice have low cortical but high trabecular bone volume, with impaired bone formation, resorption, and mineralization [52]. IBSP lies within a cluster of genes including DMP1, MEPE, and SPP1, all of which have known roles in bone and are strong candidate genes for association with BMD. MEPE has previously been associated with BMD at genome-wide significance [17]. In the current study the strongest association was seen with an SNP in IBSP, rs1054627, as was the case with two previous studies [22], [37]. Linkage disequilibrium between this SNP, and the previously reported BMD-associated SNP rs1471403 in MEPE, is modest (r2 = 0.16). Whilst out study supports the association of common variants in IBSP in particular with BMD, further studies will be required to determine if more than one of these genes is BMD-associated.

Recessive mutations of LTBP3 have been identified as the cause of dental agenesis in a consanguineous Pakistani family (OMIM 613097) [53]. Affected family members had base of skull thickening, and elevated axial but not hip BMD. LTBP3−/− mice develop axial osteosclerosis with increased trabecular bone thickness, as well as craniosynostosis [54]. LTBP3 is known to bind TGFβ1, -β2 and -β3, and may influence chondrocyte maturation and enchondral ossification by effects on their bioavailability [54].

Our study also confirms the previously reported association of another TGF pathway gene, TGFBR3, encoded at chromosome 1p22, with BMD [33] (Figure S3E). In that study, association was observed in four independent datasets, but overall the findings did not achieve genome-wide significance at any individual SNP (most significant SNP rs17131547, P = 1.5×10−6). In our discovery set, peak association was seen at this locus with SNP rs7550034 (TH P = 1.5×10−4), which lies 154 kb q-telomeric of rs17131547, but still within TGFBR3 (rs17131547 was not typed or imputed in our dataset) (Figure S3E). This supports TGFBR3 as a true BMD-associated gene.

This study also demonstrated that SOX4 polymorphisms are associated with BMD variation. Both SOX4 and SOX6 are cartilage-expressed transcription factors known to play essential roles in chondrocyte differentiation and cartilage formation, and hence endochondral bone formation. SOX6 has previously been reported to be BMD-associated at genome-wide significant levels [17]. Whilst SOX4−/− mice develop severe cardiac abnormalities and are non-viable, SOX4+/− mice have osteopaenia with reduced bone formation but normal resorption rates, and diminished cortical and trabecular bone volume [55]. Our data suggest that SOX4 polymorphisms contribute to the variation in BMD in humans.

This study has a unique design amongst GWAS of BMD reported to date, using an extreme-truncate ascertainment scheme, focusing on a specific skeletal site (TH), and with recruitment of a narrow age- and gender-group (post-menopausal women age 55–85 years). Our goal in employing this scheme was to increase the study power by reducing heterogeneity due to age-, gender- and skeletal site-specific effects. Whilst osteoporotic fracture can occur at a wide range of skeletal sites, hip fracture in postmenopausal women is the major cause of morbidity and mortality due to osteoporosis. To date, with only one exception, all GWAS of BMD have studied cohorts unselected for BMD [28], and no study has restricted its participants to postmenopausal women ascertained purely on the basis of hip BMD. Assuming marker-disease-associated allele linkage disequilibrium of r2 = 0.9, for alpha = 5×10−8 our study has 80% power to detect variants contributing 0.3% of the additive genetic variance of BMD. An equivalent-powered cohort study would require ∼16,000 unselected cases.

Considering the 26 known genes (or genomic areas) associated with BMD, P-values less than <0.05 were seen in our discovery for 21 of the BMD-associated SNPs. Of the 26 known BMD genes, 16 would have been included in our replication study on the basis of the strength of their BMD association in our discovery cohort, but were not further genotyped as they were known already to be BMD-associated. Had these 16 genes replicated, 22 genes would have been identified in this single study, demonstrating the power of the design of the current study.

A potential criticism of studies of highly selected cohorts, such as the AOGC-discovery cohort, is that the associations identified may not be relevant in the general population. However, the confirmation of our findings in replication cohorts of women unselected for BMD confirms that our findings are of broad relevance.

In summary, our study design therefore represents a highly efficient model for future studies of quantitative traits and is one of the first reported studies using an extreme truncate design in any disease. We have identified two new BMD loci at genome-wide significance (GALNT3, RSPO3), with GALNT3 SNPs also associated with fracture. Strong evidence was also demonstrated for four novel loci (CLCN7, IBSP, LTBP3, SOX4). Further support was also provided that TGFBR3 is a true BMD-associated locus. Our discovery cohort replicated 21 of 26 previously identified BMD-associated loci. Our novel findings further advance our understanding of the aetiopathogenesis of osteoporosis, and highlight new genes and pathways not previously considered important in BMD variation and fracture risk in the general population. Our study also provides strong support that the use of extreme truncate selection is an efficient and powerful approach for the study of quantitative traits.

Materials and Methods

Ethics statement

All participants gave written, informed consent, and the study was approved by the relevant research ethics authorities at each participating centre.

Subjects and phenotypes

The discovery sample population included 1128 Australian, 74 New Zealand and 753 British women, between 55–85 years of age, five or more years postmenopausal, with either high BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055) or low BMD (age- and gender-adjusted BMD z-scores of −4.0 to −1.5, n = 900) (Tables S1 and S2). BMD z-scores were determined according to the Geelong Osteoporosis Study normative range [19]. Low BMD cases were excluded if they had secondary causes of osteoporosis, including corticosteroid usage at doses equivalent to prednisolone ≥7.5 mg/day for ≥6 months, past or current anticonvulsant usage, previous strontium usage, premature menopause (<45 years), alcohol excess (>28 units/week), chronic renal or liver disease, Cushing's syndrome, hyperparathyroidism, thyrotoxicosis, anorexia nervosa, malabsorption, coeliac disease, rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, osteomalacia, and neoplasia (cancer, other than skin cancer). Screening blood tests (including creatinine (adjusted for weight), alkaline phosphatase, gamma-glutamyl transferase, 25-hydroxyvitamin D and PTH) were checked in 776 cases, and no differences were found between the high and low BMD groups. Therefore no further screening tests were done of the remaining cases.

Fracture data were analysed comparing individuals who had never reported a fracture after the age of 50 years, with individuals who had had a low or non-high trauma (low trauma fracture  =  fracture from a fall from standing height or less) osteoporotic fracture (excluding skull, nose, digits, hand, foot, ankle, patella) after the age of 50 years. Vertebral, hip and non-vertebral fractures were considered both independently and combined.

All participants were of self-reported white European ancestry.

DNA was obtained from peripheral venous blood from all cases except those recruited from New Zealand, for whom DNA was obtained from salivary samples using Oragene kits (DNA Genotek, Ontario, Canada). We have previously demonstrated that DNA from these two sources have equivalent genotyping characteristics [20].

After quality control checks including assessment of cryptic relatedness, ethnicity and genotyping quality, 900 individuals with low TH BMD and 1055 individuals with high TH BMD were available for analysis.

The replication cohort consisted of 8928 samples drawn from nine cohort studies, outlined in Tables S3 and S4 (‘AOGC replication cohort’) which were directly genotyped, These replication cases were adult women (age 20–95 years), unselected with regard to BMD, and who were not screened for secondary causes of osteoporosis. Replication was also performed in silico in 11,970 adult women from the TwinsUK and Rotterdam, and deCODE Genetics GWASs [21], [22], [23], in which association data were available at LS and FN.

High and low BMD ascertainment was defined according to the TH score, because this has better measurement precision than FN BMD [24]. However, neither TwinsUK nor the Rotterdam Study had TH BMD on the majority of their datasets and therefore were analysed using the FN measurement for which data were available on the whole cohort. All replication findings at the hip are reported therefore for FN BMD. TH and FN BMD are closely correlated (r = 0.882 in the AOGC dataset), with FN BMD one of the components of the TH BMD measurement.

Genotyping

Genotyping of the discovery cohort (n = 2036) was performed using Illumina Infinium II HumHap300 (n = 140), 370CNVDuo (n = 4), 370CNVQuad (n = 1882) and 610Quad (n = 10) chips at the University of Queensland Diamantina Institute, Brisbane, Australia. Genotype clustering was performed using Illumina's BeadStudio software; all SNPs with quality scores <0.15 and all individuals with <98% genotyping success were excluded. 289499 SNPs were shared across all chip types. Cluster plots from the 500 most strongly associated loci, were manually inspected and poorly clustering SNPs excluded from analysis. Following imputation using the HapMap Phase 2 data, 2,543,887 SNPs were tested for association with TH and LS BMD (Manhattan plot of association findings, Figure S1). After data cleaning, minimal evidence of inflation of test statistics was observed, with a genomic inflation factor (λ) of 1.0282 (qq plot, Figure S2).

A total of 124 SNPs were successfully genotyped in the AOGC replication cohort. These replication study SNPs were selected from the findings of the discovery cohort, either based on the strength of association (P-value) or following analysis with GRAIL (n = 45) [25], using as seed data all SNPs previously reported to be associated with BMD at GWAS significant levels (results for all replication SNPs presented in Table S5). GRAIL is a bioinformatic program that assesses the strength of relationships between genes in regions surrounding input SNPs (usually derived from genetic association studies) and other SNPs or genes associated with the trait of interest, by assessing their co-occurrence in PubMed abstracts. Where genes surrounding input SNPs occur more frequently in abstracts with known associated genes, these SNPs are more likely themselves also to be associated, and can thus be prioritized for inclusion in replication studies.

For the replication study, genotyping was performed either by Applied Biosystems OpenArray (n = 113) or Taqman technology (n = 11) (Applied Biosystems, Foster City, CA, USA), according to the manufacturer's protocol.

Statistical methods

Eleven individuals were removed because of abnormal X-chromosome homozygosity (X-chromosome homozygosity either <−0.14, or >+0.14). Outliers with regard to autosomal heterozygosity (either <0.34225 or >0.357, n = 40) and missingness (>3%, n = 4) were removed. Using an IBS/IBD analysis in PLINK to detect cryptic relatedness, one individual from 35 pairs of individuals with pi-hat >0.12 (equivalent to being 3rd degree relatives or closer) were removed. SNPs with minor allele frequency <1% (n = 561), and those not in Hardy-Weinberg equilibrium (P<10−7, n = 170) were then removed, leaving 288,768 SNPs in total. Nine replication SNPs were removed because of excess missingness (>10%) or because they failed tests of Hardy-Weinberg equilibrium (P<0.001).

To detect and correct for population stratification EIGENSTRAT software was used. We first excluded the 24 regions of long range LD including the MHC identified in Price et al. before running the principal components analysis, as suggested by the authors [26]. Sixteen individuals were removed as ethnic outliers, leaving 1955 individuals in the final discovery dataset.

Imputation analyses were carried out using Markov Chain Haplotyping software (MaCH; http://www.sph.umich.edu/csg/abecasis/MACH/) using phased data from CEU individuals from release 22 of the HapMap project as the reference set of haplotypes. We only analyzed SNPs surrounding disease-associated SNPs that were either genotyped or could be imputed with relatively high confidence (R2≥0.3). For TH measurements, a case-control association analysis of imputed SNPs was performed assuming an underlying additive model and including four EIGENSTRAT eigenvectors as covariates, using the software package MACH2DAT [27] which accounts for uncertainty in prediction of the imputed data by weighting genotypes by their posterior probabilities. For FN and LS BMD analyses, Z-transformed residual BMD scores (in g/cm2) were generated for the entire AOGC cohort after adjusting for the covariates age, age2, and weight, and for centre of BMD measurement. Because the regression coefficient for BMD on genotype would be biased by selection for extremes, we adopted the approach detailed in Kung et al (2009) [28]. Specifically, the regression coefficient of genotype on BMD was estimated, and subsequently transformed to the regression coefficient of BMD on genotype through knowledge of the population variance of the phenotype and the allele frequencies. For fracture data, analysis was by logistic regression. Only SNPs achieving GWAS significance were tested for fracture association. The SNPs used for replication from the Rotterdam Study were analyzed using MACH2QTL implemented in GRIMP [29]. Data from the discovery and replication cohorts were combined using the inverse variance approach as implemented in the program METAL [30].

SNPs associated with BMD were also tested for association with fracture in the AOGC discovery and replication cohorts (hip, vertebral, nonvertebral, and all low trauma fractures, age ≥50 years, as defined above), by logistic regression.

Study power was calculated using the ‘Genetic Power Calculator’ [31].

Mouse BMD analysis

All animal studies were approved by the MRC Harwell Unit Ethical Review Committee and are licensed under the Animal (Scientific Procedures) Act 1986, issued by the UK Government Home Office Department. Dual-energy X-ray absorptiometry (DEXA) was performed using a Lunar Piximus densitometer (GE Medical Systems) and analysed using the Piximus software.

Data availability

Data related to this study will be available to research projects approved by a Data Access Committee including representatives of the University of Queensland Research Ethics Committee. For enquiries regarding access please contact the corresponding author, MAB (matt.brown@uq.edu.au).

Supporting Information

Attachment 1

Attachment 2

Attachment 3

Attachment 4

Attachment 5

Attachment 6

Attachment 7

Attachment 8

Attachment 9


Zdroje

1. US Department of Health and Human Services

2004

Bone health and Osteoporosis: a report of the surgeon

general.

Rockville, MD, USA

2. US Department of Commerce

1993

Hip fracture rates in people aged fifty years and over:

mortality, service use, expenditures, and long-term functional

impairment.

Washington, DC

3. Johnell

O

Kanis

JA

2006

An estimate of the worldwide prevalence and disability associated

with osteoporotic fractures.

Osteoporos Int

17

1726

1733

4. Kanis

JA

Johnell

O

Oden

A

Johansson

H

McCloskey

E

2008

FRAX and the assessment of fracture probability in men and women

from the UK.

Osteoporos Int

19

385

397

5. Henry

MJ

Pasco

JA

Seeman

E

Nicholson

GC

Sanders

KM

2001

Assessment of fracture risk: value of random population-based

samples—the Geelong Osteoporosis Study.

J Clin Densitom

4

283

289

6. Nguyen

ND

Pongchaiyakul

C

Center

JR

Eisman

JA

Nguyen

TV

2005

Identification of high-risk individuals for hip fracture: a

14-year prospective study.

J Bone Miner Res

20

1921

1928

7. Arden

NK

Baker

J

Hogg

C

Baan

K

Spector

TD

1996

The heritability of bone mineral density, ultrasound of the

calcaneus and hip axis length: a study of postmenopausal

twins.

J Bone Miner Res

11

530

534

8. Arden

NK

Spector

TD

1997

Genetic influences on muscle strength, lean body mass, and bone

mineral density: a twin study.

J Bone Miner Res

12

2076

2081

9. Dequeker

J

Nijs

J

Verstraeten

A

Geusens

P

Gevers

G

1987

Genetic determinants of bone mineral content at the spine and

radius: a twin study.

Bone

8

207

209

10. Harris

M

Nguyen

TV

Howard

GM

Kelly

PJ

Eisman

JA

1998

Genetic and environmental correlations between bone formation and

bone mineral density: a twin study.

Bone

22

141

145

11. Nguyen

TV

Howard

GM

Kelly

PJ

Eisman

JA

1998

Bone mass, lean mass, and fat mass: same genes or same

environments?

Am J Epidemiol

147

3

16

12. Duncan

E

Cardon

L

Sinsheimer

J

Wass

J

Brown

M

2003

Site and Gender Specificity of Inheritance of Bone Mineral

Density.

J Bone Miner Res

18

1531

1538

13. Sigurdsson

G

Halldorsson

BV

Styrkarsdottir

U

Kristjansson

K

Stefansson

K

2008

Impact of genetics on low bone mass in adults.

J Bone Miner Res

23

1584

1590

14. Flicker

L

Hopper

J

Rodgers

L

Kaymakci

B

Green

R

1995

Bone density determinants in elderly women: a twin

study.

J Bone Miner Res

10

1607

1613

15. Duncan

EL

Brown

MA

2010

Clinical review 2: Genetic determinants of bone density and

fracture risk—state of the art and future directions.

J Clin Endocrinol Metab

95

2576

2587

16. Naganathan

V

Macgregor

A

Snieder

H

Nguyen

T

Spector

T

2002

Gender differences in the genetic factors responsible for

variation in bone density and ultrasound.

J Bone Miner Res

17

725

733

17. Rivadeneira

F

Styrkarsdottir

U

Estrada

K

Halldorsson

BV

Hsu

YH

2009

Twenty bone-mineral-density loci identified by large-scale

meta-analysis of genome-wide association studies.

Nat Genet

41

1199

1206

18. Orwoll

ES

Belknap

JK

Klein

RF

2001

Gender specificity in the genetic determinants of peak bone

mass.

J Bone Miner Res

16

1962

1971

19. Henry

MJ

Pasco

JA

Nicholson

GC

Seeman

E

Kotowicz

MA

2000

Prevalence of osteoporosis in Australian women: Geelong

Osteoporosis Study.

J Clin Densitom

3

261

268

20. Bahlo

M

Stankovich

J

Danoy

P

Hickey

PF

Taylor

BV

2010

Saliva-Derived DNA Performs Well in Large-Scale, High-Density

Single-Nucleotide Polymorphism Microarray Studies.

Cancer Epidemiol Biomarkers Prev

19

794

798

21. Richards

JB

Rivadeneira

F

Inouye

M

Pastinen

TM

Soranzo

N

2008

Bone mineral density, osteoporosis, and osteoporotic fractures: a

genome-wide association study.

Lancet

371

1505

1512

22. Styrkarsdottir

U

Halldorsson

BV

Gretarsdottir

S

Gudbjartsson

DF

Walters

GB

2009

New sequence variants associated with bone mineral

density.

Nat Genet

41

15

17

23. Styrkarsdottir

U

Halldorsson

BV

Gretarsdottir

S

Gudbjartsson

DF

Walters

GB

2008

Multiple genetic loci for bone mineral density and

fractures.

N Engl J Med

358

2355

2365

24. Shepherd

JA

Fan

B

Lu

Y

Lewiecki

EM

Miller

P

2006

Comparison of BMD precision for Prodigy and Delphi spine and

femur scans.

Osteoporos Int

17

1303

1308

25. Raychaudhuri

S

Plenge

RM

Rossin

EJ

Ng

AC

Purcell

SM

2009

Identifying relationships among genomic disease regions:

predicting genes at pathogenic SNP associations and rare

deletions.

PLoS Genet

5

e1000534

doi:10.1371/journal.pgen.1000534

26. Price

AL

Weale

ME

Patterson

N

Myers

SR

Need

AC

2008

Long-range LD can confound genome scans in admixed

populations.

Am J Hum Genet

83

132

135; author reply 135-139

27. Li

Y

Willer

CJ

Sanna

S

Abecasis

GR

2009

Genotype imputation.

Annu Rev Genomics Hum Genet

10

387

406

28. Kung

AWC

Xiao

S-M

Cherny

S

Li

GHY

Gao

Y

2010

Assocation of JAG1 with bone mineral density and osteoporotic

fractures: a genome-wide association study and follow-up replication

studies.

Am J Hum Genet

86

1

11

29. Estrada

K

Abuseiris

A

Grosveld

FG

Uitterlinden

AG

Knoch

TA

2009

GRIMP: a web- and grid-based tool for high-speed analysis of

large-scale genome-wide association using imputed data.

Bioinformatics

25

2750

2752

30. Willer

CJ

Sanna

S

Jackson

AU

Scuteri

A

Bonnycastle

LL

2008

Newly identified loci that influence lipid concentrations and

risk of coronary artery disease.

Nat Genet

40

161

169

31. Purcell

S

Cherny

SS

Sham

PC

2003

Genetic Power Calculator: design of linkage and association

genetic mapping studies of complex traits.

Bioinformatics

19

149

150

32. Cho

YS

Go

MJ

Kim

YJ

Heo

JY

Oh

JH

2009

A large-scale genome-wide association study of Asian populations

uncovers genetic factors influencing eight quantitative

traits.

Nat Genet

41

527

534

33. Xiong

DH

Liu

XG

Guo

YF

Tan

LJ

Wang

L

2009

Genome-wide association and follow-up replication studies

identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different

ethnic groups.

Am J Hum Genet

84

388

398

34. Timpson

NJ

Tobias

JH

Richards

JB

Soranzo

N

Duncan

EL

2009

Common variants in the region around Osterix are associated with

bone mineral density and growth in childhood.

Hum Mol Genet

18

1510

1517

35. Esapa

C

Head

R

Chan

E

Crane

M

Cheeseman

M

2009

A mouse with a Trp589Arg mutation in

N-acetylgalactosaminyltransferase 3 (Galnt3) provides a model for familial

tumoural calcinosis.

Endocrine Abstracts

19

OC31

36. Pettersson

U

Albagha

OM

Mirolo

M

Taranta

A

Frattini

A

2005

Polymorphisms of the CLCN7 gene are associated with BMD in

women.

J Bone Miner Res

20

1960

1967

37. Koller

DL

Ichikawa

S

Lai

D

Padgett

LR

Doheny

KF

2010

Genome-wide association study of bone mineral density in

premenopausal European-American women and replication in African-American

women.

J Clin Endocrinol Metab

95

1802

1809

38. Topaz

O

Shurman

DL

Bergman

R

Indelman

M

Ratajczak

P

2004

Mutations in GALNT3, encoding a protein involved in O-linked

glycosylation, cause familial tumoral calcinosis.

Nat Genet

36

579

581

39. Frishberg

Y

Topaz

O

Bergman

R

Behar

D

Fisher

D

2005

Identification of a recurrent mutation in GALNT3 demonstrates

that hyperostosis-hyperphosphatemia syndrome and familial tumoral calcinosis

are allelic disorders.

J Mol Med

83

33

38

40. Larsson

T

Davis

SI

Garringer

HJ

Mooney

SD

Draman

MS

2005

Fibroblast growth factor-23 mutants causing familial tumoral

calcinosis are differentially processed.

Endocrinology

146

3883

3891

41. Urakawa

I

Yamazaki

Y

Shimada

T

Iijima

K

Hasegawa

H

2006

Klotho converts canonical FGF receptor into a specific receptor

for FGF23.

Nature

444

770

774

42. Kawano

K

Ogata

N

Chiano

M

Molloy

H

Kleyn

P

2002

Klotho gene polymorphisms associated with bone density of aged

postmenopausal women.

J Bone Miner Res

17

1744

1751

43. Ogata

N

Matsumura

Y

Shiraki

M

Kawano

K

Koshizuka

Y

2002

Association of klotho gene polymorphism with bone density and

spondylosis of the lumbar spine in postmenopausal women.

Bone

31

37

42

44. Riancho

JA

Valero

C

Hernandez

JL

Ortiz

F

Zarrabeitia

A

2007

Association of the F352V variant of the Klotho gene with bone

mineral density.

Biogerontology

8

121

127

45. Yamada

Y

Ando

F

Niino

N

Shimokata

H

2005

Association of polymorphisms of the androgen receptor and klotho

genes with bone mineral density in Japanese women.

J Mol Med

83

50

57

46. Sims

AM

Shephard

N

Carter

K

Doan

T

Dowling

A

2007

Genetic Analyses in a Sample of Individuals With High or Low Bone

Density Demonstrates Association With Multiple Wnt Pathway

Genes.

J Bone Miner Res

23

499

506

47. van Meurs

JB

Rivadeneira

F

Jhamai

M

Hugens

W

Hofman

A

2006

Common genetic variation of the low-density lipoprotein

receptor-related protein 5 and 6 genes determines fracture risk in elderly

white men.

J Bone Miner Res

21

141

150

48. Kim

KA

Wagle

M

Tran

K

Zhan

X

Dixon

MA

2008

R-Spondin family members regulate the Wnt pathway by a common

mechanism.

Mol Biol Cell

19

2588

2596

49. Blaydon

DC

Ishii

Y

O'Toole

EA

Unsworth

HC

Teh

MT

2006

The gene encoding R-spondin 4 (RSPO4), a secreted protein

implicated in Wnt signaling, is mutated in inherited

anonychia.

Nat Genet

38

1245

1247

50. Aoki

M

Mieda

M

Ikeda

T

Hamada

Y

Nakamura

H

2007

R-spondin3 is required for mouse placental

development.

Dev Biol

301

218

226

51. Trost

Z

Trebse

R

Prezelj

J

Komadina

R

Logar

DB

2010

A microarray based identification of osteoporosis-related genes

in primary culture of human osteoblasts.

Bone

46

72

80

52. Malaval

L

Wade-Gueye

NM

Boudiffa

M

Fei

J

Zirngibl

R

2008

Bone sialoprotein plays a functional role in bone formation and

osteoclastogenesis.

J Exp Med

205

1145

1153

53. Noor

A

Windpassinger

C

Vitcu

I

Orlic

M

Rafiq

MA

2009

Oligodontia is caused by mutation in LTBP3, the gene encoding

latent TGF-beta binding protein 3.

Am J Hum Genet

84

519

523

54. Dabovic

B

Chen

Y

Colarossi

C

Obata

H

Zambuto

L

2002

Bone abnormalities in latent TGF-[beta] binding protein

(Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating

TGF-[beta] bioavailability.

J Cell Biol

156

227

232

55. Nissen-Meyer

LS

Jemtland

R

Gautvik

VT

Pedersen

ME

Paro

R

2007

Osteopenia, decreased bone formation and impaired osteoblast

development in Sox4 heterozygous mice.

J Cell Sci

120

2785

2795

Štítky
Genetika Reprodukční medicína

Článek vyšel v časopise

PLOS Genetics


2011 Číslo 4

Nejčtenější v tomto čísle

Tomuto tématu se dále věnují…


Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Krvácení v důsledku portální hypertenze při jaterní cirhóze – od pohledu záchranné služby až po závěrečný hepato-gastroenterologický pohled
nový kurz
Autoři: PhDr. Petr Jaššo, MBA, MUDr. Hynek Fiala, Ph.D., prof. MUDr. Radan Brůha, CSc., MUDr. Tomáš Fejfar, Ph.D., MUDr. David Astapenko, Ph.D., prof. MUDr. Vladimír Černý, Ph.D.

Rozšíření možností lokální terapie atopické dermatitidy v ordinaci praktického lékaře či alergologa
Autoři: MUDr. Nina Benáková, Ph.D.

Léčba bolesti v ordinaci praktického lékaře
Autoři: MUDr. PhDr. Zdeňka Nováková, Ph.D.

Revmatoidní artritida: včas a k cíli
Autoři: MUDr. Heřman Mann

Jistoty a nástrahy antikoagulační léčby aneb kardiolog - neurolog - farmakolog - nefrolog - právník diskutují
Autoři: doc. MUDr. Štěpán Havránek, Ph.D., prof. MUDr. Roman Herzig, Ph.D., doc. MUDr. Karel Urbánek, Ph.D., prim. MUDr. Jan Vachek, MUDr. et Mgr. Jolana Těšínová, Ph.D.

Všechny kurzy
Kurzy Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Nemáte účet?  Registrujte se

Zapomenuté heslo

Zadejte e-mailovou adresu se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se