#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Rozdíl [Na+] – [Cl-] významně přispívá k acidemii pacientů s jaterní cirhózou


[Na+] –⁠ [Cl-] difference significantly contributes to acidemia in patients with liver cirrhosis

Aim:
To evaluate the role of strong ion difference (SID) in acid-base disorders in patients with liver disease.

Patients and methods:
We evaluated the acid-base status in 11 patients with liver cirrhosis both by traditional and quantitative Stewart-Fencl methods.

Results:
Nine of eleven patients had pH within the norm, 2/11 had pH above 7.44. One patient had respiratory alkalosis, the second had a combined respiratory alkalemia and metabolic acidemia. The anion gap was increased only in one patient, but after correction for serum albumin concentration, it was above the norm in 10/11 patients. pCO2 was below the normal limit in 5/11 patients. The Stewart-Fencl evaluation revealed decreased SID in 11/11 patients. Both SID and the difference in [Na+] –⁠ [Cl-] closely correlated with [HCO3-] (r = 0.9264 and r = 0.7272, respectively, P < 0.01). The not routinely assayed ions [UA-] were increased in 9/11 patients.

Conclusion:
The acid-base status in patients with decompensated liver cirrhosis was characterized by a tend­ency to respiratory alkalemia and metabolic acidemia. Apart from an increase of [UA-], the difference in [Na+] –⁠ [Cl-] con­tributed significantly to acidemia. Thus, this simple parameter aids in determining the causes of acid-base disturbance and influences the treatment strategy.

Key words:
acid-base balance –⁠ liver cirrhosis –⁠ sodium-chloride difference –⁠ Stewart-Fencl method


Autoři: Jana Lůžková 1;  Bořivoj Lůžek 2;  Karel Matoušovic 3,4
Působiště autorů: 2. LF UK, Praha 1;  I. interní oddělení nemocnice Most, o. z., Krajská zdravotní, a. s. 2;  Interní klinika 2. LF UK a FN v Motole, Praha 3;  Oddělení transplantací a tkáňové banky FN v Motole, Praha 4
Vyšlo v časopise: Vnitř Lék 2016; 62(Suppl 6): 14-20
Kategorie: Původní práce

Souhrn

Cíl:
Zjistit význam nábojů nesených silnými ionty v patogenezi odchylek acidobazické rovnováhy u pacientů s jaterní cirhózou.

Pacienti a metody:
Vyšetřili jsme 11 pacientů s dekompenzovanou cirhózou a zhodnotili změny acidobazické rovnováhy jak tradiční, tak kvantitativní metodou podle Stewarta a Fencla.

Výsledky:
Dle tradiční metody mělo 9/11 pacientů pH v normě a jen 2/11 měli pH > 7,44, z toho jeden měl respirační alkalózu a u druhého bylo pH výsledkem respirační alkalemie a metabolické acidemie. Anion gap byl zvýšen pouze u jednoho pacienta, po jeho korekci na koncentraci albuminu byl však zvýšen u 10/11 pacientů. pCO2 byl snížen u 5/11 pacientů. Dle Stewartova-Fenclova přístupu jsme zjistili snížení náboje neseného silnými ionty (SID –⁠ strong ion difference) u 11/11 pacientů. SID těsně korelovala s [HCO3-] (r = 0,9264, P < 0,01). Rozdíl mezi koncentracemi [Na+] a [Cl-] rovněž významně koreloval s [HCO3-] (r = 0,7272, P < 0,01). Ionty, které běžně nestanovujeme [UA-], byly zvýšeny u 9/11 pacientů, především v důsledku zvýšení laktátů (u 11/11 pacientů).

Závěr:
Stav acidobazické rovnováhy u pacientů s dekompenzovanou jaterní cirhózou byl charakterizován tendencí k respirační alkalemii a metabolické acidemii. K metabolické acidemii významně přispíval –⁠ kromě zvýšení [UA-] –⁠ také snížený rozdíl [Na+] –⁠ [Cl-]. Posouzení tohoto jednoduchého parametru může upřesnit důvody poruchy acidobazické rovnováhy, a tím i strategii léčby.

Klíčová slova:
acidobazická rovnováha –⁠ jaterní cirhóza –⁠ natriochloridová diference –⁠ Stewartova-Fenclova metoda

Úvod

Regulace acidobazické rovnováhy organizmu (ABR) je přičítána ledvinám a plicím, ale podílejí se na ní z řady příčin i játra, za fyziologického stavu mimo jiné denní produkcí 1 000 mmol hydrogenkarbonátu. Změny ABR při jaterní cirhóze jsou výsledkem velmi komplikovaných dějů [1], z nichž některé mají acidifikující a jiné alkalizující vliv. Tyto děje se často vzájemně ruší a výsledkem může být normální pH, navzdory rozvratu vnitřního prostředí. V důsledku často přítomného hyperaldosteronizmu je porušen elektrolytový metabolizmus [2,3]. Vázne syntéza albuminu s tendencí k alkalóze [4] a mění se bílkovinné spektrum. Je porušen metabolizmus aminokyselin. Podle některých autorů existuje vazba mezi rychlostí syntézy močoviny v játrech a ABR. Jestliže se sníží HCO3- nebo pH, tlumí se syntéza urey v játrech (z NH3 a HCO3-) a HCO3-, vznikající v průběhu oxidace proteinů, je zadržován v organizmu a slouží ke korekci acidózy [5–7]. Jiní autoři však tento vztah neprokázali [8]. Při ascitu se často rozvine i porucha ledvin v rámci hepatorenálního syndromu. Nezanedbatelný je také vliv podávaných léků, zejména diuretik [9], které působí metabolickou alkalózu [10]. Významnou roli hraje retence tekutin s edémy a ascitem, ale kromě toho často se sníženým efektivním cirkulačním objemem [11]. Hemodynamické změny u cirhózy zahrnují hyperkinetickou cirkulaci s periferní vazodilatací a sníženým průtokem krve ledvinami [12], což přispívá k retenci vody a sodíku v organizmu. Poměrně častá je též porucha tubulární funkce ve smyslu renální tubulární acidózy. Retence vody přispívá k diluční acidóze. Zrychlené dýchání je důsledkem dráždění dýchacího centra retinovanými metabolity a velkého ascitu, což vede k poklesu pCO2 a respirační alkalóze. Dosud publikované studie o poruchách ABR u pacientů s cirhózou analyzují tuto problematiku tradiční metodou založenou na Hendersonově-Hasselbachově rovnici. Tento přístup sice odhalí odchylku ABR a klasifikuje ji na respirační či meta­bolickou, říká však jen málo o podstatě metabolické (nerespirační) změny. V naší studii hodnotíme stav ABR nejen tradičním přístupem, ale také novější, kvantitativní metodou dle Stewarta a Fencla (S-F) [13–15], která umožňuje popsat příčinu, která odchylku metabolizmu způsobila. Cílem této studie je také zjistit příspěvek silných iontů ke stavu ABR.

Pacienti a metody

Parametry acidobazické rovnováhy (ABR) jsme vyšetřili u 11 pacientů, 6 mužů a 5 žen, ve věku 43–73 roků s dekompenzovanou jaterní cirhózou. Podkladem onemocnění byl u 7 nemocných etylizmus, u 2 chronická hepatitis, u jednoho kombinace hepatitidy a etylizmu a u jednoho pacienta jsme příčinu nezjistili. 9 z 11 pacientů mělo ascites, 7 z nich bylo léčeno diuretiky, 2 furosemidem, 3 spironolaktonem a 2 oběma diuretiky a 4 pacientům jsme diuretika nepodávali; 2 pacienti měli zvýšený sérový kreatinin (102 a 282 µmol/l). Biochemické vyšetření bylo provedeno v rutinní laboratoři, parametry ABR byly získány analýzou kapilární krve podle Astrupa.

Rozbor odchylek ABR jsme provedli jednak tradiční metodou, jednak podle novějšího přístupu navrženého Stewartem a Fenclem.

Tradiční přístup hodnocení ABR (bicarbonate-centered) je založen na Hendersonově-Hasselbalchově rovnici a výpočtu aniontové mezery (anion gap –⁠ AG) korigované na sérovou hladinu albuminu (AGkorig) a je všeobecně známý [16–20]. Novější způsob náhledu na ABR podle Stewarta a Fencla (S-F přístup) [13–15,21–35] je méně známý, a proto zde ve stručnosti vysvětlíme jeho podstatu. Respirační složka ABR je při S-F přístupu interpretována stejně jako při tradičním pohledu, tedy podle pCO2. Hodnocení metabolické složky ABR vychází z principu elektroneutrality, podle něhož musí být součet nábojů nesených kationty roven součtu nábojů nesených anionty (schéma). Všechny kationty plazmy jsou silné (tedy plně disociované a chemicky nereagující), zatímco na straně aniontů jsou silnými jen chlor a ionty, které běžně nestanovujeme, označované jako UA- (unidentified anions), tj. ketokyseliny, laktát, anionty hromadící se při jaterním či ledvinovém selhání apod. Ostatní anionty plazmy –⁠ albumin, fosfát a hydrogenkarbonát –⁠ jsou ionty slabé, neúplně disociované, tedy pufry. S-F teorie ABR vychází z hypotézy, že pH i [HCO3-] jsou sekundární veličiny, které se nemohou změnit samy o sobě (závislé proměnné), ale mění se tehdy a jen tehdy, když se změní některá z nezávisle proměnných veličin.

Schéma. Princip elektroneutrality
Schéma. Princip elektroneutrality
Součet plazmatických kationtů je vždy roven součtu plazmatických aniontů. Tradiční přístup hodnotí metabolickou složku acidobazické rovnováhy podle hodnoty [HCO3-]. Stewartův-Fenclův přístup naopak vychází z principu elektroneutrality a považuje [HCO3-] za hodnotu závislou na koncentraci všech ostatních iontů plazmy. [HCO3-] se tedy nemůže měnit samo o sobě, ale tehdy a jen tehdy, když se změní koncentrace kteréhokoliv jiného iontu (schéma), a to bez ekvimolární změny iontu s opačným nábojem. Strong ion difference – SID = [Na+] + [K+] + [Ca++] + [Mg++] – [Cl-] – [UA-], dle Fencla lze však spočítat nepřímo jako součet aniontů slabých kyselin:SID = [HCO3-] + [Alb-] + [Pi-]. AG (anion gap, aniontová mezera) = [Na+] + [K+] – [Cl-] – [HCO3-]. Z aniontové mezery usuzujeme při tradičním přístupu na koncentraci aniontů silných kyselin, které běžně nestanovujeme [UA-], ale s nepřesnostmi, neboť nekalkuluje s koncentracemi [Ca++] + [Mg++], ale zejména nábojem neseným [Alb-] + [Pi-], což v případě jejich odchylek od normy vede k falešné hodnotě AG. Korigujeme-li vypočtenou hodnotu AG na [Alb-] a [Pi-], přiblížíme se k hodnotě [UA-]. V případě této korekce se AGkorig liší od [UA-] jen málo, a to o [Ca++] + [Mg++]. V klinické praxi většinou stačí korigovat AG na albumin.

Metabolická složka ABR je dle tohoto přístupu hodnocena podle dvou nezávisle proměnných veličin, z nichž první je definována silnými a druhá slabými ionty plazmy a to:

  1. Rozdílem nábojů mezi silnými (plně disociovanými a chemicky nereagujícími) kationty a anionty (tzv. diference silných iontů/strong ion difference –⁠ SID = [Na+] + [K+] + [Ca2+] + [Mg2+] –⁠ [Cl-] –⁠ [UA-], kde [UA-] je koncentrace neurčených silných aniontů). Snížení SID acidifikuje, zvýšení alkalizuje.
  2. Pomocí celkové koncentrace slabých neprchavých aniontů [Atot], jen částečně disociovaných (albumin a fosfáty), a tedy nábojem jejich disociované složky –⁠ [Atot-] = [Alb-] + [Pi-], náboj nesený albuminem a fosfátem můžeme snadno spočítat podle jednoduchých rovnic [15,36,37], snížení alkalizuje, zvýšení acidifikuje [10,38].

Tyto 2 nezávisle proměnné veličiny určují koncentraci hydrogenkarbonátu [HCO3-]. Např. jestliže se zvýší na straně kaniontů [Na+] bez současného zvýšení doprovodného silného aniontu –⁠ obvykle [Cl-] –⁠ musí se zvýšit –⁠ aby zůstala zachována elektroneutralita –⁠ koncentrace slabých aniontů, z nichž biologicky nejvýznamnější je [HCO3-]. Tradiční přístup hodnotí tento stav jako metabolickou alkalózu signalizovanou zvýšením [HCO3-], S-F přístup to hodnotí jako alkalózu v důsledku zvýšení SID, dané zvýšením [Na+]. Obdobnou úvahou dospějeme např. k příčině metabolické acidózy vzniklé v důsledku vzestupu [Cl-] (hyper­chloremická acidóza tradičního přístupu) nebo iontů [UA-] např. laktátu při jaterním selhání (acidóza se zvýšeným AG). [UA-] je jen přesnějším vyjádřením AG.

Kvantitativně nejvýznamnějšími ionty ovlivňujícími SID jsou Na+ a Cl-. V klinické praxi je hodnotíme izolovaně. Vzhledem k jejich širokému rozmezí normálních hodnot je výhodnější hodnotit rozdíl jejich koncentrací, Diff(NaCl), který nám daleko více napovídá a o jejich příspěvku k odchylkám ABR [28]. Tento parametr pochopitelně výborně koreluje se SID (neboť ostatní silné ionty jsou v plazmě v daleko menší koncentraci), ale z praktického hlediska a z pohledu tradičního přístupu je důležité, že koreluje také s [HCO3-] [39–41]. Pokles Diff(NaCl) může nastat jednak v důsledku dilučního efektu (diluční acidóza tradičního pohledu –⁠ neboť plazmatická [Na+] je vyšší než [Cl-], a tudíž se při naředění sníží o více mmol/l než [Cl-]) [42], jednak v důsledku poruchy natrio-chloridového metabolizmu v případech, ve kterých bychom tuto možnost neočekávali [39,43–46]. Takovou situací je např. zvýšení [UA-], kdy koncentrace [Na+] a [Cl-] jsou ještě v referenčním rozmezí, ale v některých případech je již Diff(NaCl) snížena. Tuto poruchu bychom hodnotili jen jako důsledek zvýšené koncentrace běžně nestanovovaných silných kyselin. Příspěvek koncentrací [Na+] a [Cl-] vyplyne teprve při posouzení Diff(NaCl). Vyplývá to z toho, že i při normonatremii a normochloremii může být Diff(NaCl) snížena. Dle tradiční analýzy bychom takovou poruchu mohli posuzovat pouze jako metabolickou acidózu se zvýšeným AG. Z pohledu S-F teorie však v důsledku snížení Diff(NaCl) se sníží SID a následně –⁠ v rámci zachování elektroneutrality –⁠ se musí snížit [HCO3-], což přispívá k metabolické acidóze. Vztah mezi [HCO3-], Diff(NaCl) a AG můžeme vyjádřit z nejjednoduššího výpočtu pro AG: AG = Diff(NaCl) –⁠ HCO3-, který můžeme upravit do tvaru: HCO3- = Diff(NaCl) –⁠ AG. Z tohoto vztahu plyne, že pokud je AG blízko normy (nejsou zvýšeny [UA-] S-F přístupu), musí existovat lineární vztah mezi plazmatickou koncentrací HCO3 -⁠ a Diff(NaCl). A naopak, je-li hodnota Diff(NaCl) blízko normy, musí existovat nepřímý line­ární vztah mezi HCO3 -⁠ a AG.

Kromě posuzování Diff(NaCl) je důležité i posouzení poměru jejich koncentrací, natrichloridový poměr –⁠ [Na+]/[Cl-], který by mohl pomoci odhalit příspěvek diluce či kontrakce [27,45] na změny ABR. Poměr Na/Cl v případě čisté diluce/kontrakce zůstává (in vitro) nezměněn, na rozdíl od Diff(NaCl), která při diluci klesá a při kontrakci stoupá. Je-li však při metabolické poruše ABR přítomna dysbalance jednoho z těchto iontů z jiného důvodu než změny obsahu vody, mění se i poměr Na/Cl [28,47].

Hodnocení respirační složky ABR je u klasického i S-F přístupu totožné.

Výsledky

Hodnocení dle tradičního přístupu (tab. 1 a 2)

Tab. 1. Laboratorní údaje o jednotlivých pacientech
Laboratorní údaje o jednotlivých pacientech

Tab. 2. Počty pacientů, u nichž byly přítomny odchylky od normy
Počty pacientů, u nichž byly přítomny odchylky od normy

V normě mělo pH 9 z 11 pacientů, 2 z 11 pacientů měli pH > 7,44, tedy alkalózu, z toho v 1 případě respiračního typu, v druhém případě jako součet respirační alkalemie (snížení pCO2) a metabolické acidemie (snížení [HCO3-]). U dalších 9 pacientů, kteří měli pH v normě, byl u 5/11 snížen pCO2 a jen 3/11 měli sníženou hodnotu [HCO3-], tedy pouze u těchto 3 pacientů by při hodnocení stavu ABR tradičním způsobem vzniklo podezření na metabolickou acidózu. Anion gap (AG) jsme počítali dle rovnice: AG = [Na+] + [K+] –⁠ [Cl-] –⁠ [HCO3-] a za jeho normu jsme považovali součet hodnot středních koncentrací jednotlivých iontů. Nízká hladina albuminu skrývá skutečnou hodnotu AG, a proto jsme takto vyčtený AG následně modifikovali přepočtem na sérovou hladinu albuminu podle rovnice: AGkorig = AG + 0,25 × (40 –⁠ Salb) [15,48]. Nekorigovaný AG byl zvýšen pouze u 1 pacienta. Po korekci AG na sérovou hladinu albuminu (AGkorig) jsme však zjistili jeho zvýšení téměř u všech pacientů (10/11), což svědčí o hromadění silných kyselin. AGkorig koreloval s koncentrací laktátu (r = 0,6234, P < 0,05). BE byl snížen jen u jednoho pacienta.

Hodnocení dle Stewartova-Fenclova přístupu (tab. 1 a 2)

SID, hodnotící vliv silných iontů na ABR, byla snížena u všech pacientů (11/11), což přispívalo k metabolické acid­emii působené odchylkami silných iontů. Na tomto snížení se podílelo zvýšení [UA-] u 9/11 pacientů [10], dané především zvýšením laktátů u všech 11 pacientů. Ke snížení SID dále přispívalo snížení kationtů, a to u 3/11 [Na+], u 3/11 [K+], u 5/11 [Ca2+], u 4/11 [Mg2+], je však zřejmé, že příspěvek iontů o nízké sérové koncentraci byl malý. Příspěvek [Cl-] ke snížení SID byl rovněž malý, byla zvýšena jen u 1/11 pacientů. Hodnota SID těsně korelovala s [HCO3-] (r = 0,9264, P < 0,01), nikoliv však s pH. Rozdíl mezi koncentracemi kvantitativně nejvýznamnějšího kationtu a aniontu, tedy natria a chloridu –⁠ Diff(NaCl) –⁠ byl pod střední hodnotou normy u 8/11 pacientů a rovněž těsně koreloval s [HCO3-] (r = 0,7272, P < 0,01), ale zůstal těsně pod korelací s pH (r = 0,5889, NS). Natriochloridový poměr byl u všech pacientů vyšší než střední hodnota normy, vypočítaná jako podíl středních hodnot fyziologického rozmezí koncentrací natria a chloru.

Náboj nesený slabými neprchavými kyselinami –⁠ [Atot-] –⁠ byl snížen u všech pacientů (což přispívalo k alkalemii), především v důsledku nízké [Alb-] u 9/11 pacientů. I u obou dalších pacientů byl albumin na dolní hranici normy.

Průměrná [Na+] u pacientů léčených furosemidem byla 136,7 mmol/l, u pacientů bez furosemidu 139,4 mmol/l. Nezaznamenali jsme rozdíl v [K+] mezi pacienty bez a s furosemidem.

Již AG jasně koreloval s [UA-] (r = 0,8888, P < 0,01), přestože byl u většiny pacientů v normě. Korelace AGkorig a [UA-] byla téměř absolutní (r = 0,9468, P < 0,01).

Diskuse

Poruchy ABR u cirhotiků jsou nejčastěji charakterizovány respirační alkalemií spolu s metabolickou acid­emií. V závislosti na stupni poškození jater se poruchy prohlubují. Při kompenzované cirhóze ve stadiu Child-Pugh A je stav ABR charakterizován mírnou hypalbuminemickou alkalemií, při prohlubující se jaterní lézi ve stadiu B a C přistupuje respirační alkalemie [49]. Při jaterním selhání nabývá převahu metabolická acidemie v důsledku hromadění silných kyselin, zejména laktátu [50]. U poloviny našich pacientů bylo sníženo pCO2. Respirační alkalemie je typickým projevem všech typů jaterních postižení [51]. Pravděpodobně je to důsledek stimulace dýchacího centra retinovanými aminy a jinými látkami, které nejsou dostatečně metabolizovány játry a má také vztah i ke změněné hemodynamice [1]. Také intracelulární acidóza v důsledku porušeného buněčného metabolizmu mozkového kmene může být odpovědna za hyperventilaci [52,53]. Vyšší stav bránice při velkém ascitu také vede ke zrychlenému dýchání, a tím k poklesu pCO2.

Většina našich pacientů s ascitickou jaterní cirhózou měla pH v normě navzdory mnohým odchylkám ve složení extracelulární tekutiny. Nekorigovaný AG ukazoval na hromadění silných kyselin jen u 1/11 pacientů, a není proto průkazný pro retenci silných aniontů. Teprve AG korigovaný na albumin (AGkorig) prokázal hromadění silných kyselin téměř u všech pacientů. Z toho vyplývá nutnost této korekce [19,21,36,37,48,54], neboť nedostatečná syntéza albuminu v játrech způsobující alkalemii může zcela zakrýt hromadění silných kyselin, ale i vliv dalších iontů (působících acidemii). Někteří autoři dále doporučují korigovat AG navíc i na sérovou koncentraci fosfátů, čímž se jeho výpovědní hodnota dále zpřesní. To má význam zejména u nemocných v renální insuficienci, u nichž stoupá hladina fosfátů, které přispívají k metabolické acidóze, a tedy vypočtenou hodnotu AG zvyšují. Sami se domníváme, že v klinické praxi tato korekce nutná není. Hladina AGkorig těsně korelovala s [UA-] S-F přístupu (r = 0,9468, P < 0,01). Z toho vyplývá poznatek, že u pacientů s ascitickou jaterní cirhózou má AGkorig dostatečnou výpovědní hodnotu o hromadění silných kyselin, a není tedy nutné vypočítávat [UA-] z rovnice pro SID.

V čem tedy přispívá S-F přístup k upřesnění poruchy ABR u pacientů s cirhózou? Především v tom, že na rozdíl od tradičního hodnocení detailně zhodnotí příčiny odchylky ABR. Především je to výpočet SID, který odhalí příspěvek koncentrací silných iontů ke změnám ABR. Snížení SID, přítomné u všech našich pacientů, bylo také rozhodující příčinou vývoje metabolické acidemie, neboť téměř absolutně korelovalo s [HCO3-] (r = 0,9264, P < 0,01). SID je výsledkem součtu koncentrací mnoha iontů. Uvědomíme-li si však, že na straně kationtů je příspěvek odchylek [K+] + [Ca2+] + [Mg2+] ve srovnání s [Na+] velmi malý a že na straně aniontů má rozhodující vliv [Cl-] (při vyloučení odchylky [UA-]), je nasnadě, že SID by bylo možno nahradit jednodušším natriochloridovým rozdílem Diff(NaCl). Tuto možnost jsme již prokázali na velkém počtu nefrologických pacientů [27,28]. I v současné studii byla dobrá, i když ne absolutní (v důsledku vysoké hodnoty [UA-]) korelace mezi SID a Diff(NaCl) a velmi těsná korelace mezi Diff(NaCl) a [HCO3-], zatímco korelace mezi [UA-] a [HCO3-] byla nesignifikantní. Dá se tedy soudit, že odchylky v metabolizmu natria a chloru měly ještě větší vliv na metabolickou složku ABR než [UA-]. Z těchto dvou kvantitativně nejvýznamnějších iontů se na snížení SID podílelo především snížení [Na+], které sice bylo jen u 3 pacientů pod hranicí široké normy, ale u většiny pacientů se k dolní hranici blížilo. Je dobře známo, že při cirhóze je zvýšena resorpce natria v distálním nefronu, zároveň však dochází k retenci tekutin a výsledná natremie je dána součtem těchto dějů. V této souvislosti je třeba si uvědomit i změny natriového (i kaliového) metabolizmu v souvislosti s léčbou. Diuretika, infuze roztoků bohatých na chloridy jako fyziologický roztok, které snižují SID, lidského albuminu, jež je slabou kyselinou, velké množství glukózy při porušené glukoneogenezi, to vše může posunout parametry ABR . Také kontrakce efektivního cirkulujícího volumu je u cirhózy s otoky a ascitem běžná [1].

Závěr

Změny ABR u pacientů s jaterní cirhózou jsou velmi komplikované [55] a jsou součtem mnoha odchylek, z nichž některé alkalizují a jiné acidifikují, takže je jejich vliv na koncentraci vodíkových iontů často protichůdný, a pH proto může zůstat v normě, jak tomu bylo u většiny našich pacientů. Nejčastěji popisovanou změnou je respirační alkalemie spojená s metabolickou acidemií. Ve smyslu acidifikace se u našich pacientů uplatňovalo hromadění silných běžně nestanovovaných iontů, zejména laktátu, a ještě silněji pokles SID daný především poklesem rozdílu mezi koncentracemi natria a chloridů –⁠ Diff(NaCl). Tuto veličinu bychom měli vzít v úvahu i při pohledu na ABR tradičním způsobem a snažit se ji korigovat (např. roztoky, které obsahují natrium a chlor ve fyziologickém poměru 1,4 : 1, omezením příjmu soli, aplikací NaHCO3 apod). To považujeme za hlavní přínos této studie.

Seznam použitých zkratek

ABR –⁠ acidobazická rovnováha AG –⁠ aniontová mezera/anion gap AGkorig –⁠ aniontová mezera korigovaná na plazmatickou koncentraci albuminu S-F –⁠ Stewartův-Fenclův přístup k hodnocení ABR SID –⁠ rozdíl mezi náboji nesenými všemi silnými kationty a všemi silnými anionty plazmy/strong ion difference [Atot] –⁠ součet koncentrací plazmatického albuminu (g/l) a anorganického fosfátu (mmol/l) [Atot-] –⁠ součet koncentrací ionizovaného plazmatického albuminu (mmol/l) a ionizovaného anorganického fosfátu (mmol/l) [HCO3-], [Na+], [K+], [Ca2+], [Mg2+], [Cl-] –⁠ koncentrace příslušných iontů v mmol/l [UA-] –⁠ koncentrace běžně nestanovovaných iontů (mmol/l) [Pi-] –⁠ koncentrace ionizovaného anorganického fosfátu (mmol/l) [Alb-] –⁠ koncentrace ionizovaného albuminu (mmol/l) Diff(NaCl) –⁠ rozdíl v plazmatických koncentracích mezi natriem a chlorem (mmol/l)

Práce vznikla za podpory grantu 15–33686A.

prof. MUDr. Karel Matoušovic, DrSc.

karel.matousovic@lfmotol.cuni.cz

Interní klinika 2. LF UK a Oddělení transplantací a tkáňové banky FN v Motole,

Praha

www.fnmotol.cz

Doručeno do redakce 1. 9. 2016

Přijato po recenzi 30. 9. 2016


Zdroje

1. Bernardi M, Predieri S. Disturbances of acid-base balance in cirrhosis: a neglected issue warranting futher insights. Liver Int 2005; 25(3): 463–466.

2. Wagner CA. Effect of mineralocorticoids on acid-base balance. Nephron Physiol 2014; 128(1–2): 26–34. Dostupné z DOI: <http://dx.doi.org/10.1159/000368266>.

3. Lee Hamm L, Hering-Smith KS, Nakhoul NL. Acid-base and potassium homeostasis. Semin Nephrol 2013; 33(3): 257–264. Dostupné z DOI: <http://dx.doi.org/10.1016/j.semnephrol.2013.04.006>.

4. Wilkes P. Hypoproteinemia, strong ion difference and acid-base status in critically ill patients. J Appl Physiol 1998; 84(5): 1740–1748.

5. Häussinger D. Liver and kidney in acid-base rtegulation. Nephrol Dial Transpl 1995; 10(9): 1536.

6. Häussinger D, Steeb R, Gerok W. Ammonium and bicarbonate homeostasis in chronic liver disease. Klin Wochenschr 1990; 68(3): 175–182.

7. Häussinger D, Gerok W. Hepatic urea synthesis and pH regulation. Role of CO2, HCO3-, pH and the activity of carbonic anhydrase. Eur J Biochem 1985; 152(2): 381–386.

8. Shangraw RE, Jahoor F. Effect of liver disease and transplantation on urea synthesis in humans: relationship to acid-base status. Am J Physiol 1999; 276(Pt 1): G1145-G1152.

9. Laffi G, La Villa G, Carloni V et al. Loop diuretic therapy in liver cirrhosis with ascites. J Cardiovasc Pharmacol 1993; 22(Suppl 3): S51-S58.

10. McAuliffe J, Lind LJ, Fencl V et al. Hypoproteinemic alkalosis. Am J Med 1986; 81(1): 86–90.

11. Kinouchi T Fluid, electrolyte, and acid-base disorders in liver cirrhosis. Nihon Rinsho 1994; 52(1): 124–131.

12. Henriksen JH, Bendtsen F, Møller S. Acid-base disturbance in patients with cirrhosis: relation to hemodynamic dysfunction. Eur J Gastroenterol Hepatol 2015; 27(8): 920–927. Dostupné z DOI: <http://dx.doi.org/10.1097/MEG.0000000000000382>.

13. Stewart PA. Independent and dependent variables of acid-base control. Respir Physiol 1978; 33(1): 9–26.

14. Stewart PA. Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 1983; 61(12): 1444–1461.

15. Fencl V, Leith DE. Stewart´s quantitative acid-base chemistry: applications in biology and medicine. Respir Physiol 1993; 91(1): 1–16.

16. Henderson LJ. Das Gleichgewicht zwischen Säuren und Basen im Tierischen Organismus. Ergeben Physiol 1909; 8 : 254–325.

17. Haselbalch KA. Die Berechnung der Wasserstoffzahl des Blutes aus der freien and gebundenen Kohlesäure desselben, und die Sauerstoffbildung als Funktion der Wasserstoffzahl. Biochem Z 1916; 78 : 112–144.

18. Salem M, Mujais S. Gaps in anion gap. Arch Int Med 1992; 152(8): 1625–1629.

19. Fencl V, Rossing TH. Acid-base disorders in critical care medicine. Ann Rev Med 1989; 40 : 17–29.

20. Astrup P, Jorgensen K, Andersen Os et al. The acid-base metabolism. A new approach. Lancet 1960; 1(7133): 1035–1039.

21. Fencl J, Jabor A, Kazda A et al. Diagnosis of acid-base disturbances in critically ill patients. Am J Respir Crit Care 2000; 162(6): 2246–2251.

22. Corey HE. Stewart and beyond: new models of acid-base balance. Kidney Int 2003; 64(3): 777–787.

23. Wooten EW. Science review: quantitative acid-base physiology using the Stewart model. Crit Care 2004; 8(6): 448–452.

24. Sirker AA, Rhodes A, Grounds RM et al. Acid-base physiology: the “traditional” and the “modern” approaches. Anaesthesia 2002; 57(4): 348–356.

25. Kurtz I, Kraut J, Ornekian V et al. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol 2008; 294(5): F1009-F1031. Dostupné z DOI: <http://dx.doi.org/10.1152/ajprenal.00475.2007>.

26. Matoušovic K, Martínek V. Analýza a korekce poruch acidobazické rovnováhy na základě Stewartova-Fenclova principu. Vnitř Lék 2004; 50(7): 526–530.

27. Havlin J, Matoušovic K, Schuck O et al. Patofyziologie metabolické acidózy u pacientů se sníženou glomerulární filtrací podle Stewartovy-Fenclovy teorie. Vnitř Lék 2009; 55(2): 97–104.

28. Havlin J, Matoušovic K, Schuck O et al. The use of sodium-chloride difference and chloride-sodium ratio in the evaluation of metabolic acidosis in critically ill patients. Eur J Pediatr 2012; 171(11): 1719; author reply 1721–1722. Dostupné z DOI: <http://dx.doi.org/10.1007/s00431–012–1833–2>.

29. Masevicius FD, Dubin A. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients? World J Crit Care Med 2015; 4(1): 62–70. Dostupné z DOI: <http://dx.doi.org/10.5492/wjccm.v4.i1.62>.

30. Schück O, Matoušovic K. Relation between pH and the strong ion difference (SID) in body fluids. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149(1): 69–73.

31. Schück O, Matoušovic K. Vztah mezi pH a diferencí silných iontů (SID) ve vnitřním prostředí. Klin Biochem Metab 2005; 13/34(1): 32–35.

32. Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med 2014; 371(19): 1821–1831. Dostupné z DOI: <http://dx.doi.org/10.1056/NEJMra1215672>.

33. Boyle M, Baldwin I. Introduction to an alternative view of acid/base balance: the strong ion difference or Stewart approach. Aust Crit Care 2002; 15(1): 14–20.

34. Doberer D, Funk GC, Kirchner K et al. A critique of Stewart‘s approach: the chemical mechanism of dilutional acidosis. Intensive Care Med 2009; 35(12): 2173–2180. Dostupné z DOI: <http://dx.doi.org/10.1007/s00134–009–1528-y>.

35. Kofránek J. Komplexní model acidobazické rovnováhy krve. In: Ziethamlová M (ed). MEDSOFT 2009. Agentura Action M: Praha 2009 : 23–160.

36. Figge, J, Jabor A, Kazda A et al. Anion gap and hypoproteinemia. Crit Care Med 1998; 26(11): 1807–1810.

37. Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117(6): 453–467.

38. Watson PD. Modeling the effects of proteins on pH in plasma. J Appl Physiol 1999; 86(4): 1421–1427.

39. Relman AS. Renal acidosis and renal excretion of acid in health and disease. Adv Intern Med 1964; 12 : 295–347.

40. Thomas SS, Mitch WE. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin. Clin Exp Nephrol 2013; 17(2): 174–182. Dostupné z DOI: <http://dx.doi.org/10.1007/s10157–012–0729–9>.

41. Mallat J, Barrailler S, Lemyze M et al. Use of sodium-chloride difference and corrected anion gap as surrogates of Stewart variables in critically ill patients. PLoS One 2013; 8(2): e56635. Dostupné z DOI: <http://dx.doi.org/10.1371/journal.pone.0056635>.

42. Garella S, Chang BS, Kahn SI. Dilution acidosis and contraction alkalosis: review of the concept. Kidney Int 1975; 8(5): 279–283.

43. Coles GA. Body composition in chronic renal failure. Q J Med 1972; 41(161): 25–47.

44. Ronco C, Kellum JA, Bellomo R. Acid-Base Problems: Basic Physiology. In: Ronco C, Kellum JA, Bellomo R. Critical Care Nephrology. 2nd ed. Elsevier: Philadelphia 2008. ISBN 978–1416042525.

45. Kurt A, Ecevbit A, Ozkiraz S et al. The use of cloride-sodium ratio in the evaluation of metabolic acidosis in critically ill neonates. Eur J Pediatr 2012, 171(6): 963–969. Dostupné z DOI: <http://dx.doi.org/10.1007/s00431–011–1666–4>.

46. Opatrná S, Matoušovic K, Klaboch J et al. Importance of serum [Na+] and [Cl-] difference in acid-base status classification. Anesth Analg 2010, 111(1): 243; author reply 243–244. Dostupné z DOI: <http://dx.doi.org/10.1213/ANE.0b013e3181dd8a33>.

47. Kříž J, Schück O, Horáčková M. Hyponatremia in spinal cord injury patients: new insight into differentiating between the dilution and depletion forms. Spinal Cord 2015; 53(12): 896. Dostupné z DOI: <http://dx.doi.org/10.1038/sc.2015.131>.

48. Rossing TH, Maffero N, Fencl V. Acid-base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 1986; 61(6): 2260–2265.

49. 49 Funk GC, Doberer D, Kneidinger N et al. Acid-base disturbances in critically ill patients with cirrhosis. Liver Int 2007; 27(7): 901–909.

50. Prytz H, Thomsen AC. Acid-base status in liver cirrhosis. Disturbances in stable, terminal and portal-caval shunted patients. Scand J Gastroenterol 1976; 11(3): 249–256.

51. Li XM, Li YX, Meng QH et al. Characteristics of acid-base balance in patients with chronic severe hepatitis: analysis of 126 cases. Zhonghua Yi Xue Za Zhi 2006; 86(30): 2131–2133.

52. Karetzky MS, Mithoefer JC. The cause of hyperventilation and arterial hypoxia in patients with cirrhosis of the liver. Am J Med Sci 1967; 254(6): 797–804.

53. Milionis HJ, Elisaf MS. Acid-base abnormalities in a patient with hepatic cirrhosis. Nephrol Dial Transplant 1999; 14(6): 1599–1601.

54. Hassan H, Joh JH, Bacon BR et al. Evaluation of serum anion gap in patients with liver cirrhosis of diverse etiologies. Mt Sinai J Med 2004; 71(4): 281–284.

55. Lieberman FI, Reynolds TB. Plasma volume in cirrhosis of the liver: its relation to portal hypertension, ascites and renal failure. J Clin Invest 1967; 46(8): 1297–308.

Štítky
Diabetologie Endokrinologie Interní lékařství

Článek vyšel v časopise

Vnitřní lékařství

Číslo Suppl 6

2016 Číslo Suppl 6
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Mepolizumab v reálné klinické praxi kurz
Mepolizumab v reálné klinické praxi
nový kurz
Autoři: MUDr. Eva Voláková, Ph.D.

BONE ACADEMY 2025
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D., doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#